- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

曲作鹏(1980—),男(汉),副教授,博士;研究方向:表面工程及再制造技术;E-mail:z.qu@ncepu.edu.cn

中图分类号:TG174

文献标识码:A

文章编号:1007-9289(2020)03-0050-11

DOI:10.11933/j.issn.1007-9289.20200406001

参考文献 1
张焕亨.李坑垃圾焚烧高温腐蚀试验研究[D].广州:华南理工大学,2013.ZHANG H H.Experimental study on high temperature corro-sion of likeng waste incineration [ D].Guangzhou South China University of Technology,2013(in Chinese).
参考文献 2
白贤祥,张玉刚.生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究[J].环境卫生工程,2018,26(3):68-70,74.BAI X X,ZHANG Y G.Research on high temperature corro-sion treatment of water cooled wall of waste heat boiler in do-mestic waste incineration plant[J].Environmental SanitationEngineering,2018,26(3):68-70,74(in Chinese).
参考文献 3
胥杨,陈文觉,陈乐,等.某台垃圾焚烧炉过热器失效分析[J].锅炉技术,2019,50(1):55-60.XU Y,CHEN W J,CHEN L,et al.Failure analysis of a su-perheater in a garbage incinerator [J].Boiler Technology,2019,50(1):55-60(in Chinese).
参考文献 4
蒋旭光,刘晓博.垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J].中国腐蚀与防护学报,2020,40(03):205-214.JIANG X G,LIU X B.Research progress and direction thinking on key heating surface corrosion of garbage incinera-tion boilers[J].Journal of Chinese Society for Corrosion and Protection,2020,40(3):205-214(in Chinese).
参考文献 5
魏琪,王瑞,李辉,等.循环流化床锅炉焚烧垃圾腐蚀现状及防护研究进展[J].锅炉技术,2011,42(3):57-59.WEI Q,WANG R,LI H,et al.Current status of corrosion of circulating fluidized bed boiler incineration and protection research progress [J].Boiler Technology,2011,42(3):57-59(in Chinese).
参考文献 6
魏琪,王瑞,李辉,等.高温氯化腐蚀现状及防护研究 [C].第十三届国际热喷涂研讨会(ITSS′2010)暨第十四届全国热喷涂年会(CNTSC′2010),2010:70-73.WEI Q,WANG R,LI H,et al.Current status of high-tem-perature chlorinated corrosion and its protection [ C].The Thirteenth International Thermal Spraying Seminar(ITSS′ 2010)and the Tenth Proceedings of the 4th National Thermal Spraying Annual Conference(CNTSC′2010),2010:70-73(in Chinese).
参考文献 7
BANKIEWICZ D,ENESTAM S,YRJAS P,et al.Experi-mental studies of Zn and Pb induced high temperature corro-sion of two commercial boiler steel [J].Fuel Processing Technology,2013,105:89-97.
参考文献 8
LEE S H,THEMELIS N J,CASTALDI M J.High-tempera-ture corrosion in waste-to-energy boilers[J].Journal of Ther-mal Spray Technology,2007,16(1):104-110.
参考文献 9
KARLSSON S,PETTERSSON J,JOHANSSON L G,et al.Alkali induced high temperature corrosion of stainless steel:The influence of NaCl,KCl and CaCl2 [J].Oxidation of Metals,2012,78:83-102.
参考文献 10
LIU J,DYSON D,ASSELIN E.Long-term hot corrosion be-havior of boiler tube alloys in waste-to-energy plants[J].Ox-idation of Metals,2016,86(1-2):135-149.
参考文献 11
HUNSINGER H,ANDERSSON S.The potential of SO2 for reducing corrosion in WtE plants[J].Journal of Material Cy-cles and Waste Management,2014,16(4):657-664.
参考文献 12
MIN’KO N I,LAZAREVA E A.Protection of nichrome-al-loy articles from high-temperature corrosion(Review)[J].Springer US,2018,75(5-6).
参考文献 13
徐火力,杨家燚.垃圾焚烧锅炉过热器腐蚀原因分析及对策[J].能源与环境,2018(1):30-32.XU H L,YANG J Y.Analysis and Countermeasures of corro-sion causes of superheater in waste incineration boiler[J].Energy and Environment,2018(1):30-32(in Chinese).
参考文献 14
LI N,VAINIO E,HUPA L,et al.Interaction of high Al2O3 refractories with alkaline salts containing potassium and sodi-um in biomass and waste combustion[J].Energy & Fuels,2018,32(12):12971-12980.
参考文献 15
ZHAO Q,LIANG Z,JIANG W.Studies on high temperature corrosion of austenitic heat-resistant steels Super 304H/10Cr18Ni9Cu3NbN in simulated and real combustion gas at-mospheres[J].Energy Materials,2014,243-250.
参考文献 16
郑明,王小红,张勇,等.余热锅炉直升烟道水冷壁腐蚀分析与预防[J].湖南有色金属,2015,31(6):48-50.ZHENG M,WANG X H,ZHANG Y,et al.Analysis and prevention of corrosion of water-cooled wall of the direct heat flue of waste heat boiler [J].Hunan Nonferrous Metals,2015,31(6):48-50(in Chinese).
参考文献 17
范蕙萍.垃圾焚烧炉水冷膜式壁堆焊高温合金技术分析 [J].河南科技,2018(8):25-26.FAN H P.Technical analysis of water-cooled film wall surfa-cing welding superalloys in waste incinerator[J].Henan Sci-ence and Technology,2018(8):25-26(in Chinese).
参考文献 18
王迪.垃圾焚烧余热锅炉高温腐蚀及其防腐方法研究 [J].电站系统工程,2014,30(4):75-76,78.WANG D.Research on high temperature corrosion and an-ticorrosion methods of waste incineration waste heat boilers [J].Power System Engineering,2014,30(4):75-76,78(in Chinese).
参考文献 19
孙胜英.合金成分设计对含铝奥氏体耐热钢组织和性能的影响[D].北京:北京科技大学,2019.SUN S Y.The effect of alloy composition design on the struc-ture and properties of aluminum-containing austenitic heat-re-sistant steel [D].Beijing:University of Science and Tech-nology Beijing,2019(in Chinese).
参考文献 20
杨波,钟志强,黄巧贤,等.垃圾焚烧锅炉的高温氯腐蚀研究进展[J].广东电力,2016,29(6):5-11,17.YANG B,ZHONG Z Q,HUANG Q X,et al.Research pro-gress on high temperature chlorine corrosion of garbage incin-eration boilers [J].Guangdong Electric Power,2016,29(6):5-11,17(in Chinese).
参考文献 21
孙焕焕,刘爱国,孟凡玲.堆焊 Inconel 625 合金的锅炉膜式水冷壁组织和性能[J].材料热处理学报,2013,34(S2):96-99.SUN H H,LIU A G,MENG F L.Microstructure and proper-ties of boiler membrane water-cooled wall of surfacing welding Inconel 625 alloy[J].Journal of Materials Heat Treatment,2013,34(S2):96-99(in Chinese).
参考文献 22
徐兵.MIG 立向下堆焊 Inconel 625 焊接工艺研究[J].压力容器,2019,36(12):70-74.XU B.Research on the surfacing technology of MIG vertical-down surfacing Inconel 625[J].Pressure Vessel,2019,36(12):70-74(in Chinese).
参考文献 23
邱留良,边浩疆.垃圾发电厂锅炉受热面CMT堆焊 In-conel 625 镍基材料技术分析[J].科学技术创新,2018(18):167-168.QIU L L,BIAN H J.Technical analysis of CMT overlay welding of Inconel 625 nickel-based material on the heating surface of a boiler in a waste power plant[J].Science and Technology Innovation,2018(18):167-168(in Chi-nese).
参考文献 24
李俊辰,付俊波,何勇,等.爆炸喷涂的研究进展及发展趋势[J].热加工工艺,2020(14):20-24.LI J C,FU J B,HE Y,GUO S Q,et al.Research progressand development trend of detonation spraying [J].ThermalProcessing Technology,2020(14):20-24(in Chinese).
参考文献 25
THAKARE J G,PANDEY C,MULIK R S,et al.Micro-structure and mechanical properties of D-Gun sprayed Cr3C2-NiCr coating on P91 steel subjected to long term thermal ex-posure at 650 ℃ [J].Materials Research Express,2019,6(11):1165h1.
参考文献 26
刘康生.80Ni20Cr/Inconel 625 涂层的制备及在模拟垃圾焚烧炉烟气侧的腐蚀行为研究[D].南昌:南昌航空大学,2017.LIU K S.Preparation of 80Ni20Cr/Inconel 625 coating and its corrosion behavior on simulated flue gas side of waste in-cinerator[D].Nanchang:Nanchang Aeronautical Universi-ty,2017(in Chinese).
参考文献 27
SADEGHI E,MARKOCSAN N,JOSHI S V.Advances in corrosion-resistant thermal spray coatings for renewable ener-gy power plants:Part II-effect of environment and outlook [J].Journal of Thermal Spray Technology,2019,28(8):1789-1850.
参考文献 28
THAKARE J G,MULIK R S,MAHAPATRA M M.Evalua-tion of cyclic hot corrosion resistance of plasma-sprayed com-posite coating in Na2 SO4-60%V2O5 molten salt environment [J].Journal of Thermal Spray Technology,2020,29(4):811 – 824.
参考文献 29
王利,周正,王国红,等.垃圾焚烧炉热腐蚀问题的表面防护技术[J].热喷涂技术,2017,9(1):1-6.WANG L,ZHOU Z,WANG G H,et al.Surface protection technology for thermal corrosion of waste incinerators [J].Thermal Spray Technology,2017,9(1):1-6(in Chi-nese).
参考文献 30
章坤,郭华彬,孟祥瑞,等.激光重熔处理对高Cr涂层抗高温氧化性的影响及分析 [J].金属功能材料,2018,25(4):17-21.ZHANG K,GUO H B,MENG X R,et al.Effect and analy-sis of laser remelting treatment on high temperature oxidation resistance of high Cr coatings[J].Functional Metal Materi-als,2018,25(4):17-21(in Chinese).
参考文献 31
YUUZOU K.An overview on corrosion-resistant coating tech-nologies in biomass/waste-to-energy plants in recent decades [J].Coatings,2016,6(3):34.
参考文献 32
KAWAHARA Y,MATSUBARA Y.Advanced coating tech-nologies for aggressive corrosion environments in wte and power plants[C].International symposium on high-tempera-ture oxidation and corrosionISHOC-10,2011:302-307.
参考文献 33
赵娜娜.浅析垃圾焚烧发电厂水冷壁防腐措施[J].科技风,2020(1):106+121.ZHAO N N.Analysis of anti-corrosion measures for water-cooled wall of garbage incineration power plant[J].Science and Technology Wind,2020(1):106+121(in Chinese).
参考文献 34
孙浩东,孟宏杰,卢琦,等.高频感应重熔对等离子喷涂Ni基涂层的影响研究[J].工业技术与职业教育,2019,17(1):12-14.SUN H D,MENG H J,LU Q,et al.Study on the effect of high frequency induction remelting on plasma sprayed Ni-based coatings[J].Industrial Technology and Vocational Ed-ucation,2019,17(1):12-14(in Chinese).
参考文献 35
孟莹,朱小鹏,杜鹏程,等.超音速火焰喷涂 Ni60-40WC 涂层高频感应重熔处理及其水润滑摩擦磨损性能 [J].材料保护,2018,51(12):82-89.MENG Y,ZHU X P,DU P C,et al.High frequency induc-tion remelting treatment of supersonic flame spraying Ni60-40WC coating and its water-lubricated friction and wear prop-erties[J].Materials Protection,2018,51(12):82-89(in Chinese).
参考文献 36
吴勉,潘邻,童向阳,等.感应重熔技术及其在现代工业中的应用[J].表面工程与再制造,2017,17(S1):29-31.WU M,PAN L,TONG X Y,et al.Induction remelting technology and its application in modern industry[J].Sur-face Engineering and Remanufacturing,2017,17(S1):29-31(in Chinese).
参考文献 37
FUKUDAAND Y,KUMON M.Application of high velocity flamespraying for the heat exchanger tubes in coal fired boil-ers[C].Proceedings of ITSC′95.Japan:1995.107-110.
参考文献 38
郗青旗.浅析垃圾焚烧炉排炉高温过热器防腐[J].中国资源综合利用,2013(8):32-34.TONG Q Q.Analysis on the anticorrosion of high temperature superheater in the waste incinerator [J].China Resources Comprehensive Utilization,2013(8):32-34(in Chinese).
参考文献 39
任朝明.垃圾焚烧发电厂高温腐蚀机理及防护技术研究 [D].北京:华北电力大学,2018.REN C M.Research on high temperature corrosion mecha-nism and protection technology of waste incineration power plant[D].Beijing:North China Electric Power University,2018(in Chinese).
参考文献 40
张瑞娜.生活垃圾焚烧锅炉过热器管束防护材料的腐蚀行为研究[J].工业锅炉,2017(1):12-15+21.ZHANG R N.Research on corrosion behavior of superheater tube bundle protective material for domestic waste incinera-tion boiler[J].Industrial Boiler,2017(01):12-15+21(in Chinese).
参考文献 41
LIU J,SUN F.Experimental study on operation regulation of a coupled high – low energy flue gas waste heat recovery sys-tem based on exhaust gas temperature control[J].Energies,2019,12(4):706.
参考文献 42
GALETZ M C,BAUER J T,SCHÜTZE M,et al.Resistance of coatings for boiler components of waste-to-energy plants to salt melts containing copper compounds[J].Journal of Ther-mal Spray Technology,2013,22(5):828-837.
参考文献 43
LUO W W,LIU Z D,WANG Y T,et al.High temperature corrosion behaviors of the superheater materials[J].Procedia Engineering,2012,36:212-216.
参考文献 44
UUSITALO M A,VUORISTO P M J,MÄNTYLÄ,et al.El-evated temperature erosion-corrosion of thermal sprayed coat-ings in chlorine containing environments[J].Wear,2002,252(7):586-594.
参考文献 45
OKSA M,TUURNA S,VARIS T.Increased lifetime for bio-mass and waste to energy power plant boilers with HVOF coatings:High temperature corrosion testing under chlorine-containing molten salt[J].Journal of Thermal Spray Tech-nology,2013,22(5):783-796.
参考文献 46
GALETZ M C,BAUER J T,SCHÜTZE M,et al.Resistance of coatings for boiler components of waste-to-energy plants to salt melts containing copper compounds[J].Journal of Ther-mal Spray Technology,2013,22(5):828-837.
参考文献 47
CHO S H,OH S C,PARK S B,et al.High temperature corrosion behavior of Ni-based alloys[J].Metals & Materials International,2012,18(6):939-949.
参考文献 48
BERLANGA-LABARI C,FERNÁNDEZ-CARRASQUILLA J.Review about corrosion of superheaters tubes in biomass plants[J].Revista de Metalurgia,2006,42(4):299-317.
参考文献 49
ZHANG J,RAHMAN Z U,WANG X,et al.Hot corrosion behaviors of TP347H and HR3C stainless steel with KCl de-posit in oxy-biomass combustion[J].Journal of Environmen-tal Management,2020,263:110411.
参考文献 50
OLEKSAK R,TYLCZAK J,HOLCOMB G,et al.High tem-perature oxidation of steels in CO2 containing impurities[J].Corrosion Science,2020,164:108316.
参考文献 51
HONG X,SHANGKUN Z,YIMING Z,et al.Experimental study on the effect of H2 S and SO2 on high temperature corro-sion of 12Cr1MoV[J].Chinese Journal of Chemical Engi-neering,2019,27(8):1956-1964.
参考文献 52
蔡文博,王一坤,成汭珅,等.生物质Cl的析出迁移特性及对锅炉受热面腐蚀研究进展[J].热力发电,2019,48(12):1-7.CAI W B,WANG Y K,CHENG Y S,et al.Research on the characteristics of the precipitation and migration of bio-mass Cl and the corrosion of the boiler heating surface[J].Thermal Power Generation,2019,48(12):1-7(in Chi-nese).
参考文献 53
CHEN D N,ZHANG Z X,BIAN B,et al.Experimental study on high temperature corrosion of five superheater mate-rials for power plant boilers[J].Journal of Chinese Society of Power Engineering,2012,32(11):891-897.
参考文献 54
朱文斌.生物质锅炉过热器受热面金属积灰腐蚀特性研究[D].济南:山东大学,2018.ZHU W B.Research on the corrosion characteristics of metal deposits on the heating surface of biomass boiler superheater [D].Jinan:Shandong University,2018(in Chinese).
参考文献 55
刘小杰.氯在高炉内的反应行为研究[D].沈阳:东北大学,2015.LIU X J.Study on the reaction behavior of chlorine in blast furnace[D].Shenyang:Northeastern University,2015(in Chinese).
参考文献 56
仝声,王治宙,康亚倩,等.碱金属氯化物对金属材料的高温腐蚀特性研究[J].洁净煤技术,2020,26(01):77-82.TONG S,WANG Z Z,KANG Y Q,et al.Research on high temperature corrosion characteristics of alkali metal chlorides on metal materials [J].Clean Coal Technology,2020,26(1):77-82(in Chinese).
参考文献 57
ZHANG H L,ZHANG F,SUN W,et al.Research and eval-uation of T91 superheater material for high temperature corro-sion in biomass power plants [J].Anti-Corrosion Methods and Materials,2015,62(3):133-135.
参考文献 58
王旭.粉煤灰添加剂抑制生物质锅炉过热器金属腐蚀的作用规律研究[D].济南:山东大学,2019.WANG X.Study on the effect of fly ash additives on inhibi-ting metal corrosion of biomass boiler superheater [ D].Ji-nan:Shandong University,2019(in Chinese).
参考文献 59
张述金,杜晓吉,云泓波.余热锅炉过热器管束腐蚀原因分析[J].设备管理与维修,2016(7):78-79.ZHANG S J,DU X J,YUN H B.Analysis of the corrosion of the superheater tube bundle of the waste heat boiler[J].E-quipment Management and Maintenance,2016(7):78-79(in Chinese).
参考文献 60
SANG S H,DUAN Y F,CHEN H C,et al.High temperature corrosion of superheater materials in chlorination-oxidation at-mosphere [ C].2013 3rd International Conference on Ad-vanced Measurement and Test(AMT 2013),2013:85-91.
目录contents

    摘要

    垃圾焚烧发电锅炉水冷壁和过热器管壁的高温腐蚀防护是影响垃圾焚烧炉稳定运行的重要因素。 为提高垃圾焚烧炉运行的安全性,研究者从基材选择、施加表面涂层和温度控制等多方面给出了解决方案,以增加受热面金属管道的使用寿命。 在简介了锅炉高温腐蚀原理的基础上,分别评述了余热锅炉水冷壁和过热器高温腐蚀治理方案的研究进展。 在水冷壁高温腐蚀提治理方法中,敷设浇注料往往会造成烟温后移,恶化尾部烟道腐蚀,而在表面涂层防护技术中,感应重熔技术因其涂层缺陷少、结合强度高、稀释率低,表现出了良好的防腐蚀效果。 余热锅炉过热器受到显著的液相熔盐腐蚀,对于该部位的高温腐蚀治理除了提升材料等级外,应当严格控制入口烟温,适当调节燃烧气氛。

    Abstract

    Thermal corrosion protection of water-cooled walls and superheater tube walls is a key issue restricting the stable operation of waste to energy boilers. In order to improve the safety of the operation of waste to energy boilers, researchers have provided solutions from the aspects of substrate selection, surface coating and temperature control to increase the service life of metal pipes on the heated surface. Based on the introduction of the principle of high temperature corrosion of boilers, this paper reviews the research progress of high temperature corrosion control for water wall and superheater of waste heat boiler. In the treatment method of high temperature corrosion of the water wall, the laying of castables will often cause the flue gas temperature to shift back and worsen the tail flue corrosion. In the surface coating protection technology, the induction remelting technology has less coating defects and high bonding strength and low dilution rate, showing good anti-corrosion effect. The superheater of the waste to energy boiler is subject to significant liquid phase molten salt corrosion. For the treatment of high temperature corrosion at this location, in addition to upgrading the material level, the inlet flue gas temperature should be strictly controlled and the combustion atmosphere should be appropriately adjusted.

  • 0 引言

  • 随着国内生活水平的提高,垃圾源头分类逐步完善,垃圾热值逐渐增加,垃圾成分逐渐简单化,垃圾焚烧发电锅炉的运行参数也有所提升。在此情况下,焚烧炉金属部件面临的高温腐蚀威胁也愈加严重,受热面金属管道在高温下极易受腐蚀,并引起管道穿孔,甚至是爆管事故。如何在优化发电蒸汽参数,提高垃圾焚烧发电效率基础上,有效控制余热锅炉受热面的高温腐蚀,逐渐成为该领域学者研究的热点[1]

  • 对于水冷壁和过热器的高温腐蚀治理主要包括基材选择、表面防护和运行控制这3 个方面,其中表面防护是最主要的手段。国内对于垃圾焚烧炉受热面的表面防护技术主要是堆焊、热喷涂和重熔,而重熔技术因其新颖性尚未占据市场主导地位。文中以氯、硫腐蚀为核心,对垃圾焚烧余热锅炉高温腐蚀机制进行了简要分析,并在此基础上分别针对水冷壁和过热器高温腐蚀治理进行了综述,比较了各种方法的优缺点。

  • 1 高温腐蚀机理

  • 垃圾焚烧过程中会产生大量的氯、硫以及一些金属氯化物和硫酸盐等腐蚀介质。这使得垃圾焚烧锅炉,在中高温条件下,水冷壁、过热器等金属部件易受腐蚀(图1)。如图2 所示,当管壁温度超过320℃ 时高温腐蚀即显著发生,达到500℃后腐蚀则愈加剧烈,这将给部件带来严重的安全威胁。

  • 图1 过热器管腐蚀穿孔与水冷壁管腐蚀爆管的宏观形貌[2-3]

  • Fig.1 Macroscopic morphologies of the superheater tube perforation and water-cooled tube burst due to corrosion [2-3]

  • 图2 焚烧炉管壁温度和腐蚀速度关系[2]

  • Fig.2 Relationships between the temperature of the wall of the incinerator and the corrosion rate [2]

  • 1.1 高温氯腐蚀

  • 氯腐蚀是最主要的一种垃圾焚烧炉高温腐蚀形式。这是由于城市垃圾中占主要部分的橡胶、塑料类、厨余、纸类等在燃烧过程中释放出大量的氯,以Cl2、HCl和金属氯化物熔盐等形式对金属受热面进行侵蚀。

  • 1.1.1 活化氧化机制

  • 在垃圾焚烧炉的中高温环境中,氯腐蚀的氧化活化机制表现为Cl2 和HCl对腐蚀的循环促进作用[4]

  • Fe+Cl2FeCl2(s)
    (1)
  • FeCl2(s)FeCl2(g)
    (2)
  • 3FeCl2+2O2Fe3O4+3Cl2
    (3)
  • 2FeCl2+32O2Fe2O3+2Cl2
    (4)
  • 以上反应是典型的“ 活化氧化” 高温氯腐蚀机制。 HCl、Cl2 等能够渗入金属氧化膜,在氧化膜与基体的结合处反应生成金属氯化物。这种氯化物又在蒸汽压梯度的作用下, 穿过氧化膜缝隙、孔洞向外扩散至富氧环境中发生氧化,进而反应生成了氯气和金属氧化物[ 5-6]。经过这一系列的反应, 原本致密的金属氧化膜变得疏松多孔化,丧失了对基材的保护作用。

  • 1.1.2 金属氯化物熔盐腐蚀

  • 垃圾中含有一定量的碱金属(Na、K)、重金属(Zn、Pb) 和Ca等,它们在炉内燃烧时会以氯化物的形式伴随烟气凝结、沉积在金属管件表面,对金属进行严重腐蚀[4,7]。此外,多种金属氯化物混合时会形成低熔点的液相共熔物,液相介质能够溶解氧化膜,恶化受热面金属的高温腐蚀。金属氯化物的主要腐蚀过程可以用以下反应式表示[8-9] :

  • Fe2O3+6Cl-PbCl2,ZnCl22FeCl3+3O2-
    (5)
  • 4FeCl3+3O2(g)2Fe2O3+6Cl2(g)
    (6)
  • 2NaCl+Fe2O3+12O2(g)Na2Fe2O4+Cl2(g)
    (7)
  • 2KCl+Fe2O3+12O2(g)K2Fe2O4+Cl2(g)
    (8)
  • 2CaCl2+O2(g)2CaO+2Cl2(g)
    (9)
  • 2CaO+Fe2O3+32O2(g)2CaFeO4
    (10)
  • 从上式可以看出,金属氯化物对基材的腐蚀主要体现在对氧化膜的破坏作用,生成的Cl2 又能够参与腐蚀过程,这同样符合活化氧化机制。 Liu等[10]为了评估不同金属氯化物的腐蚀性,将基材(A:T22、B:310H、C:Inconel625、D: 347H、E:Esshete1250 和F:Sanicro28) 在500℃ 下分别暴露于KCl、NaCl、CaCl2、FeCl2、ZnCl2 和PbCl2 中500 h后计算其单位质量损失,结果如图3 所示。由于金属氯化物在500℃ 下的挥发速率按NaCl<KCl<ZnCl2<PbCl2 的顺序递增,因此这4 种氯化物的腐蚀性遵循相同的趋势是合理的。此外,由于CaCl2 的快速热分解(式(9))且CaO的流动性差, 因此CaCl2 没有机会像NaCl和KCl那样与氧化物发生广泛反应,腐蚀性较小。

  • 图3 在500℃的金属氯化物中暴露500 h后,锅炉管材的质量损失数据,负值表示预氧化24 h后的质量加[10]

  • Fig.3 Mass-loss data of boiler tube materials after 500 h exposures in metal chlorides at 500℃, negative values represent the mass-gain data after 24 h of pre-oxidation [10]

  • 1.2 高温硫腐蚀

  • 垃圾焚烧炉内常见有硫化物,硫化腐蚀的发生主要是因硫在不充分燃烧的情况下被还原成H2 S,并且氯化物对此起到了一定的促进作用。 H2 S在还原性气氛中能够侵入氧化膜与金属的结合面,生成硫化物,并进一步与金属元素反应[4] :

  • Fe2O3+2H2S+CO2FeS+2H2O+CO2
    (11)
  • Fe+H2SFeS+H2
    (12)
  • FeS(s)+2HClFeCl2(g)+H2S(g)
    (13)
  • 另一方面,气体的SO2、SO3 能够与碱金属氯化物反应生成硫酸盐,阻碍了氯腐蚀过程,并且熔点较高的硫酸盐腐蚀性相对较弱[8,11]

  • 2MCl+SO2+12O2+H2OM2SO4+2HCl
    (14)
  • 式中,M为Na或K。

  • Hunsinger等[11]为了研究SO2 对于腐蚀的减弱效果,利用硫酸分解提升了炉内SO2 含量,并计算金属腐蚀速率。结果显示,在525℃ 下,炉内平均SO2 浓度为720 mg/Nm 3 时,16Mo3 的腐蚀速率减小了60%。

  • 然而,当炉内温度过高时,碱金属硫酸盐可能与铁反应生成碱金属-三硫酸铁[4,11] :

  • 3M2SO4+Fe2O3+3SO22M3FeSO43
    (15)
  • 式中,M为Na或K。

  • 三硫酸铁盐的熔融温度较低,易形成液相介质,对金属受热面的氧化膜造成严重破坏。因此,对于高参数垃圾焚烧炉, SO2 和SO3 对氯腐蚀的阻碍作用并不显著,甚至会加速腐蚀过程。

  • 2 余热锅炉水冷壁高温腐蚀治理

  • 2.1 浇注料防护

  • 在第一烟道大部分区域使用耐火浇注料进行保温是国内垃圾焚烧发电厂普遍采用的方式, 这类余热锅炉受热面往往高温腐蚀现象严重。因此如何减小受热面烟气侧的高温腐蚀,保证锅炉安全稳定运行是摆在我们面前亟待解决的问题[2,12-13]

  • 针对某些垃圾焚烧企业的垃圾热值偏低的情况,大多是在特定区域敷设耐火材料加强余热锅炉水冷壁监测[2,14-16]。使用浇筑耐火材料的防腐方法,当前在国内极为普遍。针对这种情况, 在日常维护和检查时要对锅炉各部位耐火材料做重点检修,启动时要先行烘炉,以防锅炉工作中这些耐火浇注料出现脱落现象;同时,对余热锅炉的水冷壁的监测要加强,及时进行水冷壁管外观检查和管厚检测,对减薄量达20%的受热管件进行切除更换。

  • 2.2 表面涂层防护

  • 表面涂层防护主要应用在垃圾热值比较高的环境下,也是目前逐渐趋于普遍的防护方法。重点针对锅炉水冷壁和过热器管材受热面,采取堆焊、热喷涂、重熔及表面熔敷等防护方式来限制或延缓腐蚀,提高材质防腐性能。

  • 2.2.1 堆焊技术

  • 垃圾焚烧发电厂利用堆焊工艺进行防腐的方法在国外是很常见的,国内许多厂家也已尝试将该技术作为水冷壁高温氯化腐蚀的解决方案, 取得了较为满意的效果。在MIG(Melt inert-gas welding, MIG)/MAG(Metal active gas, MAG)、等离子弧、手工电弧式和CMT(Cold metal transfer, CMT)堆焊等工艺中,水冷壁堆焊用的较多的MIG/MAG堆焊和CMT堆焊。

  • (1)堆焊材料

  • 针对水冷壁管防腐,一般以镍基合金作为堆焊材料。以普遍使用的Inconel625 合金为例,这是一种添加Nb、Mo强化的镍基变形高强度高温合金,能够在高温条件下耐受以氯侵蚀为主的腐蚀。但是该种合金与基材成分差别大,在焊接时熔池较深,稀释严重,这将对堆焊层的抗腐蚀性能造成负面影响。此外,该合金用于堆焊时还存在易产生裂纹、易被氧化等问题[17]

  • 针对Inconel625 合金存在的部分缺陷,研究者尝试将其他材料应用在当前垃圾焚烧锅炉设计中[18]。对于一些中高参数余热锅炉(400℃/4 MPa),主要是使用奥氏体不锈钢作为水冷壁管材以提高防腐性能,如309S、 310S、 25Cr-14-20 Ni等。孙胜英[19]研究了ODS奥氏体钢在中高温下稳定性及拉伸性能的变化规律。结果表明,在此条件下该奥氏体不锈钢可以保持长时效的稳定服役。对于高参数(温度高于450℃) 余热锅炉,可采用抗腐蚀效果良好的Sanicro合成管。此外,HC-22、JHN24 两种合金的防腐能力优于Inconel625,这是由于前两者的Mo含量更高。 QSX3 和QSX5 是通过往改良后的310S合金中加入约3%的Si,以提高其防腐效果。另外,高Cr-Ni-Fe-Si( 4%) 合金也已经在500℃/9.8 MPa过热器管道上持续运行了4 年,抗腐蚀性良好。

  • (2)堆焊方法选择

  • MIG/MAG堆焊具有低成本、低能耗、高效率等特点,易采用机械化、自动化生产,在国际上的应用广泛。 2014 年深圳某垃圾焚烧厂对该厂的一座垃圾焚烧炉水冷壁进行了MIG/MAG堆焊施工[2]。 Inconel625 镍基合金被堆焊在第一烟道水冷壁管腐蚀较多的区域面,防腐效果明显。然而,变形严重、热输入量大、飞溅多是该技术的主要缺陷[20-21]。如图4 所示,为了研究工艺参数对堆焊层Fe稀释率的影响,徐兵[22] 采用MIG立向下工艺,在锅炉用Q245R钢板表面堆焊了2~2.1 mm厚的Inconel625 合金。针对7 种不同工艺参数下制备的样件,在距离基材2 mm处的堆焊层表面进行取样,分析其元素含量,部分结果如表1 所示。结果显示,在不同工艺参数下Fe的含量为1.25%~6.95%,这证明在工艺参数得到良好控制时,堆焊层的Fe稀释率能够满足其基本的耐高温氯腐蚀要求,即w/%≤5%。

  • 图4 MIG堆焊工艺表面和截面成型情况[22]

  • Fig.4 Surface and cross-section appearance of MIG welding process [22]

  • 表1 距基材2 mm处堆焊层位置的元素含量

  • Table1 Element content in the position of the welding layer at a distance of 2 mm from the substrate(w/%)

  • 此外,CMT(冷金属过渡)堆焊也是一种效果良好的工艺。 CMT具有引弧稳定且迅速、搭桥能力良好等优势,特别是其极低的热输入,能减少对基底的热损伤。与普通的MIG/MAG焊接相比,CMT有其独特优势[17] :①常规MIG/MAG工艺都预先设定了固定的送丝速度,通过电压反馈来调整电弧弧长,这使得堆焊质量的控制难度大。 ②若设定相同的送丝速度,则CMT所需电流更小,相应地热输入量也较小。 ③CMT堆焊短路电流低,且通过焊丝回抽来完成熔滴到工件的过渡,相比传统的短路过渡,CMT工艺不会发生飞溅[23]

  • (3)焊接变形控制

  • 水冷壁堆焊变形不仅影响组件的美观,同时也削弱了结构的承载能力。在选择堆焊工艺时, 要综合考虑如何控制堆焊变形量。主要的堆焊变形有5 种:波浪型、收缩型、弯曲型、扭曲型及角变形[17]。弯曲变形和收缩变形是水冷壁管堆焊时中产生的主要变形。因此,在进行堆焊作业时刚性固定法被普遍采用,即使用工装夹具来控制,焊后再采用人工火焰加热或卷板机来矫正。

  • 虽然目前堆焊技术仍是垃圾焚烧电站水冷壁高温防腐的主要方法,但因其稀释率较高、超过700℃高温防腐性能下降,以及成本偏高、效率偏低等原因,正在受到其他技术的挑战。

  • 2.2.2 热喷涂技术

  • (1)爆炸喷涂

  • 爆炸喷涂(Detonation gun, D-Gun)是利用燃气爆炸式燃烧加热粉体材料,并利用爆炸产生的爆轰波将粉体高速射向基材表面的一种喷涂工艺。该工艺材料应用范围广,对工件损伤小,能够制备高致密、高强度、低孔隙率的涂层[24]。 Thakare等[25] 利用爆炸喷涂工艺在P91 锅炉钢表面制备了Cr3C2-NiCr涂层,并将工件暴露在650℃下3000 h。利用SEM和EDS对样品剖面进行分析,结果显示在热处理时间达到3000 h后,涂层中未有明显的Fe元素扩散。此外,涂层在高温暴露2160 h后, 显微硬度达到最大值870 HV。这表现了该涂层在应对高温腐蚀方面的优良性能。但爆炸喷涂设备昂贵,工艺较为复杂,涂层质量控制难度较高,这也是目前应用不够广泛的主要原因。

  • (2)超音速火焰喷涂

  • 超音速火焰喷涂( High velocity oxygen fuel, HVOF)具有火焰温度低,颗粒喷射速度高等优点,在制备低含氧量、高致密度的合金与金属-陶瓷涂层上具有显著的优势,使这一措施成为了国外如美国、英国等垃圾焚烧炉的主要防护措施, 有效增加了水冷壁和过热管的工作稳定性和维护周期。国内也有少数企业应用该方法但并不普遍,这主要是由于其设备投资较大,且需经常更换磨损部件,耗气量高,粉材成本高以及较低的涂层沉积速率等原因造成的。

  • 刘康生[26] 利用HVOF技术在垃圾焚烧炉水冷壁表面分别制备了以NiAl和NiCrAlY为基础的80Ni20Cr/Inconel625 合金涂层。分析结果表明:采用HVOF制备的80Ni20Cr/Inconel625 合金涂层致密, 以NiAl和NiCrAlY打底的80Ni20Cr/Inconel625 合金涂层样品具有较低的孔隙率(分别为0.52%和0.68%),涂层、基底间的平均结合强度达分别56.06 和49.69 MPa,涂层平均硬度HRB值分别为90.80 和90.28。另外,有研究表明,通过热处理和机械加工等在喷涂层表面促进 α-氧化铝的形成能够更好地应对垃圾焚烧炉中的氯腐蚀[27]

  • (3)等离子喷涂

  • 等离子喷涂(Air plasma spray, APS)具有喷射温度高,材料适应性强的优点。该技术可用于制备金属涂层、陶瓷涂层和复合涂层等,可以通过引入具有更稳定性质的陶瓷涂层来减缓受热面高温腐蚀[28]。但是,这种技术也面临诸如设备造价昂贵,能耗高,工艺复杂等问题,影响APS工艺制备的涂层质量的原因很多,其中受到设备的工作状态和操作人员的熟练程度的因素较大,所以目前等离子喷涂技术仍处于实验室研究为主。

  • (4)电弧喷涂

  • 相对其他喷涂方法而言,电弧喷涂(Arc spraying, AS)的喷涂质量如孔隙率和结合强度等并不占优势,但是它比较适合锅炉现场大面积施工,原因在于其设备操作简单、成本低廉、沉积效率高。目前,在锅炉四管的现场防护方面,电弧喷涂铁基、镍基涂层已有一定的实际应用。如有研究者研制的NiCrB系粉芯丝材[29],通过加入的B元素的脱氧作用,使NiCrB涂层的氧含量降低至不超过2%,氧化物的降低使得其在类似垃圾焚烧炉工况下的抗高温腐蚀性能有了明显提升(如图5)。

  • 图5 电弧喷涂涂层与基材在800℃、( Na2 SO4 + 10%NaCl)涂盐介质中的热腐蚀动力学曲线[29]

  • Fig.5 Thermo-gravimetric curves of the coatings and substrate subject to hot corrosion in Na2 SO4 +10%NaCl environment at 800℃ [29]

  • 随着粉芯丝材技术的快速发展,涂层的成分设计有了更多的方向。通过合金成分与喷涂丝材的不断优化,电弧喷涂将来有可能发展成为垃圾焚烧炉管壁现场表面防护的有效技术。

  • 2.2.3 重熔技术

  • 重熔是将部件上的涂层进行再次熔融工序。重熔技术能够有效去除涂层内部的夹渣和气孔, 可以在涂层与基材产生良好的冶金结合,使得该涂层具有更好的耐腐蚀性、耐磨损性和耐冲击性。在锅炉部件防腐领域应用较多的重熔技术包括激光重熔、火焰重熔、感应重熔等。

  • (1)激光重熔

  • 激光重熔优点是能量密度高,可以重熔高熔点的材料,且由于光斑直径可调整,可控性好,适合重熔精细化程度要求较高的精密件。然而,激光重熔过程中升温与降温过程是短时间完成的, 这容易在涂层上产生裂纹,并且熔池中的气泡排出率极低。

  • (2)火焰重熔

  • 火焰重熔是以氧乙炔火焰加热熔融预设喷涂层,然后冷却并固化以改善涂层防腐等性能的方法。董晓强等[30] 将等离子喷涂NiCrBSi + WC15%涂层进行了火焰重熔处理。重熔之后, 涂层中的气孔、裂纹和未熔颗粒有了部分消除, 晶粒被细化且形成硬质相,涂层硬度、耐磨性能获得了显著增强。火焰重熔设备简单、易操作, 便于在施工现场作业,但由于火焰重熔无法像激光那样很难精确控制加热深度和对工件进行均匀加热,所以比较适合要求不高的工件。

  • (3)高频感应重熔

  • 20 世纪80 年代国外就研发出了高频感应熔覆技术,进入21 世纪,高频感应熔覆得到了进一步的发展[31]。近年来国内外很多学者对感应熔覆过程中的结合机理、熔覆参数的影响因素以及重熔模式等方面做了诸多研究。近年来,美国、英国、日本等国在垃圾焚烧锅炉水冷壁上,高频感应加热重熔的自熔合金(NiCrSiB)涂层得到了越来越多的应用[32-33]。这种涂层经重熔后结构均匀,与基体实现了化学键结合,而且重熔层刚好是喷涂层,对基材没有稀释,表面光滑[34-36]。日本某垃圾电站高频感应重熔制备的涂层使用3 年后的腐蚀试验结果表明[37] :高频感应重熔涂层提高使用寿命效果显著,与625 合金堆焊层的腐蚀速率很接近。我国台湾地区90%以上的垃圾电站锅炉水冷壁都是使用感应重熔涂层技术进行防腐。由图6 可知使用30 个月后结果,未做涂层管屏,腐蚀明显,减薄量为5 mm左右,而感应重熔涂层,未见明显腐蚀,基本未见明显减薄,应用至今15 年,没有任何问题,仍在继续使用[32]

  • 对垃圾焚烧锅炉水冷壁采用重熔技术制备高温涂层,目前国内应用较少,只有少数新材料企业能够实现量产。高频感应重熔工艺为先用氧-乙炔火焰喷涂制备预设涂层,再利用感应线圈加热部件形成熔覆层并与基底实现冶金结合,成品见图7。在熔覆层与基底接合区域形成了扩散转移层,实现了冶金结合,且孔隙率低于1%[37]

  • 图6 某垃圾发电厂有涂层与无涂层水冷壁管使用30 个月内厚度变化[32]

  • Fig.6 Thickness change of coated and uncoated water wall tubes in a waste to energy plant within 30 months [32]

  • 图7 垃圾炉管排受热面运行半年后有高频感应重熔涂层与无涂层对比[36]

  • Fig.7 Comparison of high-frequency induction remelting coating and no coating after the heating surface of the garbage furnace tube row has been running for half a year [36]

  • 3 余热锅炉过热器的高温腐蚀治理

  • 与水冷壁相比,过热器在高温环境中除了受到HCl、Cl2 和SO3 气体对管壁直接侵蚀,也易受碱金属和焦硫酸盐的熔盐腐蚀与电化学腐蚀。对过热器而言,在受到高温烟气冲击时,其中的固体颗粒物(如重金属等)易粘附于管壁表面,金属氯化物蒸汽也能够在管壁凝结,碱金属与重金属混合后可形成低熔点液相物。因此,在过热器金属管壁上不仅能够发生金属氯化物引起的氯腐蚀,也能够发生液相环境中的电化学腐蚀。

  • 在管壁外表面处于300~500℃时,温度每升高50℃,腐蚀速率则提升100%[37]。由于垃圾的Cl含量高,炉内燃烧会产生大量低熔点熔盐腐蚀物,温度提高则腐蚀加剧,因而必须降低垃圾焚烧炉过热器蒸汽的温度。经过试验研究,燃料成分中Cl含量超过0.35%时,腐蚀趋向加剧。当HCl体积浓度达到0.8%时,Fe2O3 保护层的完整已经被破坏,而当浓度达2.0%时, Fe2O3 和Fe3O4 层的连续性也进而被破坏了。图8 表示过热器管厚度耗损率与温度的关系,其失效形式是腐蚀减薄,最后甚至导致爆管。郗青旗[38]提出了过热器的防腐应尽量降低高温过热器管壁温度, 因为管壁温度对腐蚀有相当大的影响,腐蚀随温度的升高而加剧[39],所以降低壁温是一种减缓HCl高温腐蚀的有效方法。以下是过热器受热面防止高温腐蚀的主要途。

  • 图8 过热器管厚度耗损率与温度的关系

  • Fig.8 Relationships between thickness loss rate and temperature of superheater tube

  • 3.1 温度控制

  • 温度时影响炉内腐蚀程度的最关键因素,运行过程中应该控制过热器区域入口烟温,严控过热器管壁温度。高温过热器在长时间受到高温腐蚀的情况下,极易造成管壁破损泄漏,这也是垃圾焚烧锅的汽水系统事故中最普遍的一种[40]。炉排式的垃圾焚烧锅炉大多将过热器安置于第三烟道处,炉膛温度应控制在850~1050℃ 范围内,限制进入过热器的烟气最高温度不高于650℃。过热器管的高温腐蚀通常是由于壁温突破高温氧化允许的温度上限。因而垃圾焚烧锅炉在运行过程中一定要确保严格控温,从而有效减缓高温腐蚀。根据垃圾组成比例的变化,排炉式锅炉运行过程中应选择合适配风和料位,稳定炉温,加强吹灰,保证受热面清洁[41-43]

  • 3.2 采用新型的耐高温腐蚀材料

  • 选取合适的新型耐高温腐蚀材料,也是延长过热器使用年限的一种有效方法。这与水冷壁管防腐措施具有一些相似性,例如选取耐腐蚀高温合金钢作为整体材料;热喷涂耐腐蚀合金涂层,阻隔腐蚀介质侵入基底, 以达到防腐作用[44-45];涂敷耐高温防腐涂料[46-48]

  • 3.3 机械阻隔和增加管件壁厚

  • 增加过热器管壁的厚度一定程度上能够降低受热面壁温,或采取手段使其不与烟气直接接触。常见的方法是将防磨罩安装在高温过热器的迎风面,阻挡烟气的直接冲击,进而降低高温腐蚀速率[30]。根据试验情况来看,该措施可以降低高温过热器管高温腐蚀速率,且防磨罩可以实现不低于6 个月的有效使用。

  • 3.4 控制燃烧气氛

  • 垃圾燃烧时烟气成分会随燃烧气氛而变化, 从而导致腐蚀情况的差异。还原气氛下,S通常以H2 S的形式进行腐蚀,而氧化气氛下则以SO2 和SO3 的形式进行腐蚀[49]。 Oleksak等[50] 研究了550℃/1 atm工况下,SO2 对于锅炉还原性气氛内受热面金属腐蚀的影响。结果证明,此状态下SO2 的添加对于低铬钢的腐蚀影响不大。事实上,对硫腐蚀来说,还原性气氛下的腐蚀性更强。 Xu等[51] 研究了H2 S和SO2 对水冷条件下12Cr1MoV腐蚀的影响。结果表明,H2 S可以明显促进腐蚀,并且形成的粗糙的多孔氧化膜不能阻止腐蚀的进行,而SO2 对腐蚀几乎没有影响。

  • 3.5 其他

  • 将共燃剂加入垃圾中是减缓碱金属腐蚀的有效方法,最常见的是添加硫酸铵等含硫化合物[52-55]。硫氧化物能够与KCl生成K2 SO4,这是一种较为稳定的沉积盐。另外,以含Si、Al化合物作为共燃剂,也可以实现对碱金属氯化物捕捉,削弱含氯沉积盐对管壁的腐蚀效果[56-58]。此外,通过调整气流模式来控制金属温度,同样能作为延缓高温腐蚀的手段。例如,采取并流式的过热器气流模式,避免高温过热蒸汽接触高温烟气的入口而引发高温腐蚀[59-60]

  • 4 结论

  • 针对垃圾焚烧锅炉的高温腐蚀问题,从水冷壁和过热器两个方面提出了相应的治理措施。相对于浇注料防腐,解决这类问题较为可靠的手段包括:选取合适的基体材料,利用热喷涂、堆焊、重熔等热加工手段制备防腐涂层,同时也可通过燃烧控制来综合提升受热面材料的使用寿命。

  • 未来发展的主要方向有以下几个方面。

  • (1)高参数余热锅炉的防腐。近年来国内外发展较快的高参数余热锅炉防腐应从以下方面进行治理:由于该类锅炉的主蒸汽压力有所提升,锅炉受压面管道壁厚度有必要增加;对于主蒸汽温度的提高,则要增加过热器的受热面积; 高参数余热锅炉的过热器温度有所提高,相应地要提高过热器金属的防腐蚀级别。

  • (2)高温防腐涂层新技术。在高温防腐涂层技术方面,虽然堆焊技术目前国内外得应用较普遍,但也面临成本高昂、稀释率较高、效率偏低以及超过700℃ 高温防腐性能下降等问题。单纯的热喷涂技术在垃圾焚烧炉水冷壁管防腐应用中,受加工工艺、涂层厚度等影响,并不能达到可观的防腐效果。在常用的几种热喷涂技术中,电弧喷涂有可能会成为垃圾焚烧炉管壁现场表面防护的有效技术,相对来说超音速火焰喷涂是当前较为可靠的技术方案;重熔技术后来居上,在多种重熔技术中,高频感应重熔在改善热喷涂层的组织和提高性能方面展现出了较大的发展潜力。

  • (3)余热锅炉过热器高温腐蚀的综合治理。余热锅炉过热器的高温防腐治理除了上述方法外,还包括做好垃圾焚烧炉的燃烧调整,严格控制过热器管壁温度,采用新型的耐高温腐蚀材料,增加过热器管壁厚度,控制焚烧热量、温度的均匀性、控制燃烧气氛,以及在垃圾焚烧中加入添加剂共燃烧,改变气流模式等,也都有利于减轻金属腐蚀问题。

  • 参考文献

    • [1] 张焕亨.李坑垃圾焚烧高温腐蚀试验研究[D].广州:华南理工大学,2013.ZHANG H H.Experimental study on high temperature corro-sion of likeng waste incineration [ D].Guangzhou South China University of Technology,2013(in Chinese).

    • [2] 白贤祥,张玉刚.生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究[J].环境卫生工程,2018,26(3):68-70,74.BAI X X,ZHANG Y G.Research on high temperature corro-sion treatment of water cooled wall of waste heat boiler in do-mestic waste incineration plant[J].Environmental SanitationEngineering,2018,26(3):68-70,74(in Chinese).

    • [3] 胥杨,陈文觉,陈乐,等.某台垃圾焚烧炉过热器失效分析[J].锅炉技术,2019,50(1):55-60.XU Y,CHEN W J,CHEN L,et al.Failure analysis of a su-perheater in a garbage incinerator [J].Boiler Technology,2019,50(1):55-60(in Chinese).

    • [4] 蒋旭光,刘晓博.垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J].中国腐蚀与防护学报,2020,40(03):205-214.JIANG X G,LIU X B.Research progress and direction thinking on key heating surface corrosion of garbage incinera-tion boilers[J].Journal of Chinese Society for Corrosion and Protection,2020,40(3):205-214(in Chinese).

    • [5] 魏琪,王瑞,李辉,等.循环流化床锅炉焚烧垃圾腐蚀现状及防护研究进展[J].锅炉技术,2011,42(3):57-59.WEI Q,WANG R,LI H,et al.Current status of corrosion of circulating fluidized bed boiler incineration and protection research progress [J].Boiler Technology,2011,42(3):57-59(in Chinese).

    • [6] 魏琪,王瑞,李辉,等.高温氯化腐蚀现状及防护研究 [C].第十三届国际热喷涂研讨会(ITSS′2010)暨第十四届全国热喷涂年会(CNTSC′2010),2010:70-73.WEI Q,WANG R,LI H,et al.Current status of high-tem-perature chlorinated corrosion and its protection [ C].The Thirteenth International Thermal Spraying Seminar(ITSS′ 2010)and the Tenth Proceedings of the 4th National Thermal Spraying Annual Conference(CNTSC′2010),2010:70-73(in Chinese).

    • [7] BANKIEWICZ D,ENESTAM S,YRJAS P,et al.Experi-mental studies of Zn and Pb induced high temperature corro-sion of two commercial boiler steel [J].Fuel Processing Technology,2013,105:89-97.

    • [8] LEE S H,THEMELIS N J,CASTALDI M J.High-tempera-ture corrosion in waste-to-energy boilers[J].Journal of Ther-mal Spray Technology,2007,16(1):104-110.

    • [9] KARLSSON S,PETTERSSON J,JOHANSSON L G,et al.Alkali induced high temperature corrosion of stainless steel:The influence of NaCl,KCl and CaCl2 [J].Oxidation of Metals,2012,78:83-102.

    • [10] LIU J,DYSON D,ASSELIN E.Long-term hot corrosion be-havior of boiler tube alloys in waste-to-energy plants[J].Ox-idation of Metals,2016,86(1-2):135-149.

    • [11] HUNSINGER H,ANDERSSON S.The potential of SO2 for reducing corrosion in WtE plants[J].Journal of Material Cy-cles and Waste Management,2014,16(4):657-664.

    • [12] MIN’KO N I,LAZAREVA E A.Protection of nichrome-al-loy articles from high-temperature corrosion(Review)[J].Springer US,2018,75(5-6).

    • [13] 徐火力,杨家燚.垃圾焚烧锅炉过热器腐蚀原因分析及对策[J].能源与环境,2018(1):30-32.XU H L,YANG J Y.Analysis and Countermeasures of corro-sion causes of superheater in waste incineration boiler[J].Energy and Environment,2018(1):30-32(in Chinese).

    • [14] LI N,VAINIO E,HUPA L,et al.Interaction of high Al2O3 refractories with alkaline salts containing potassium and sodi-um in biomass and waste combustion[J].Energy & Fuels,2018,32(12):12971-12980.

    • [15] ZHAO Q,LIANG Z,JIANG W.Studies on high temperature corrosion of austenitic heat-resistant steels Super 304H/10Cr18Ni9Cu3NbN in simulated and real combustion gas at-mospheres[J].Energy Materials,2014,243-250.

    • [16] 郑明,王小红,张勇,等.余热锅炉直升烟道水冷壁腐蚀分析与预防[J].湖南有色金属,2015,31(6):48-50.ZHENG M,WANG X H,ZHANG Y,et al.Analysis and prevention of corrosion of water-cooled wall of the direct heat flue of waste heat boiler [J].Hunan Nonferrous Metals,2015,31(6):48-50(in Chinese).

    • [17] 范蕙萍.垃圾焚烧炉水冷膜式壁堆焊高温合金技术分析 [J].河南科技,2018(8):25-26.FAN H P.Technical analysis of water-cooled film wall surfa-cing welding superalloys in waste incinerator[J].Henan Sci-ence and Technology,2018(8):25-26(in Chinese).

    • [18] 王迪.垃圾焚烧余热锅炉高温腐蚀及其防腐方法研究 [J].电站系统工程,2014,30(4):75-76,78.WANG D.Research on high temperature corrosion and an-ticorrosion methods of waste incineration waste heat boilers [J].Power System Engineering,2014,30(4):75-76,78(in Chinese).

    • [19] 孙胜英.合金成分设计对含铝奥氏体耐热钢组织和性能的影响[D].北京:北京科技大学,2019.SUN S Y.The effect of alloy composition design on the struc-ture and properties of aluminum-containing austenitic heat-re-sistant steel [D].Beijing:University of Science and Tech-nology Beijing,2019(in Chinese).

    • [20] 杨波,钟志强,黄巧贤,等.垃圾焚烧锅炉的高温氯腐蚀研究进展[J].广东电力,2016,29(6):5-11,17.YANG B,ZHONG Z Q,HUANG Q X,et al.Research pro-gress on high temperature chlorine corrosion of garbage incin-eration boilers [J].Guangdong Electric Power,2016,29(6):5-11,17(in Chinese).

    • [21] 孙焕焕,刘爱国,孟凡玲.堆焊 Inconel 625 合金的锅炉膜式水冷壁组织和性能[J].材料热处理学报,2013,34(S2):96-99.SUN H H,LIU A G,MENG F L.Microstructure and proper-ties of boiler membrane water-cooled wall of surfacing welding Inconel 625 alloy[J].Journal of Materials Heat Treatment,2013,34(S2):96-99(in Chinese).

    • [22] 徐兵.MIG 立向下堆焊 Inconel 625 焊接工艺研究[J].压力容器,2019,36(12):70-74.XU B.Research on the surfacing technology of MIG vertical-down surfacing Inconel 625[J].Pressure Vessel,2019,36(12):70-74(in Chinese).

    • [23] 邱留良,边浩疆.垃圾发电厂锅炉受热面CMT堆焊 In-conel 625 镍基材料技术分析[J].科学技术创新,2018(18):167-168.QIU L L,BIAN H J.Technical analysis of CMT overlay welding of Inconel 625 nickel-based material on the heating surface of a boiler in a waste power plant[J].Science and Technology Innovation,2018(18):167-168(in Chi-nese).

    • [24] 李俊辰,付俊波,何勇,等.爆炸喷涂的研究进展及发展趋势[J].热加工工艺,2020(14):20-24.LI J C,FU J B,HE Y,GUO S Q,et al.Research progressand development trend of detonation spraying [J].ThermalProcessing Technology,2020(14):20-24(in Chinese).

    • [25] THAKARE J G,PANDEY C,MULIK R S,et al.Micro-structure and mechanical properties of D-Gun sprayed Cr3C2-NiCr coating on P91 steel subjected to long term thermal ex-posure at 650 ℃ [J].Materials Research Express,2019,6(11):1165h1.

    • [26] 刘康生.80Ni20Cr/Inconel 625 涂层的制备及在模拟垃圾焚烧炉烟气侧的腐蚀行为研究[D].南昌:南昌航空大学,2017.LIU K S.Preparation of 80Ni20Cr/Inconel 625 coating and its corrosion behavior on simulated flue gas side of waste in-cinerator[D].Nanchang:Nanchang Aeronautical Universi-ty,2017(in Chinese).

    • [27] SADEGHI E,MARKOCSAN N,JOSHI S V.Advances in corrosion-resistant thermal spray coatings for renewable ener-gy power plants:Part II-effect of environment and outlook [J].Journal of Thermal Spray Technology,2019,28(8):1789-1850.

    • [28] THAKARE J G,MULIK R S,MAHAPATRA M M.Evalua-tion of cyclic hot corrosion resistance of plasma-sprayed com-posite coating in Na2 SO4-60%V2O5 molten salt environment [J].Journal of Thermal Spray Technology,2020,29(4):811 – 824.

    • [29] 王利,周正,王国红,等.垃圾焚烧炉热腐蚀问题的表面防护技术[J].热喷涂技术,2017,9(1):1-6.WANG L,ZHOU Z,WANG G H,et al.Surface protection technology for thermal corrosion of waste incinerators [J].Thermal Spray Technology,2017,9(1):1-6(in Chi-nese).

    • [30] 章坤,郭华彬,孟祥瑞,等.激光重熔处理对高Cr涂层抗高温氧化性的影响及分析 [J].金属功能材料,2018,25(4):17-21.ZHANG K,GUO H B,MENG X R,et al.Effect and analy-sis of laser remelting treatment on high temperature oxidation resistance of high Cr coatings[J].Functional Metal Materi-als,2018,25(4):17-21(in Chinese).

    • [31] YUUZOU K.An overview on corrosion-resistant coating tech-nologies in biomass/waste-to-energy plants in recent decades [J].Coatings,2016,6(3):34.

    • [32] KAWAHARA Y,MATSUBARA Y.Advanced coating tech-nologies for aggressive corrosion environments in wte and power plants[C].International symposium on high-tempera-ture oxidation and corrosionISHOC-10,2011:302-307.

    • [33] 赵娜娜.浅析垃圾焚烧发电厂水冷壁防腐措施[J].科技风,2020(1):106+121.ZHAO N N.Analysis of anti-corrosion measures for water-cooled wall of garbage incineration power plant[J].Science and Technology Wind,2020(1):106+121(in Chinese).

    • [34] 孙浩东,孟宏杰,卢琦,等.高频感应重熔对等离子喷涂Ni基涂层的影响研究[J].工业技术与职业教育,2019,17(1):12-14.SUN H D,MENG H J,LU Q,et al.Study on the effect of high frequency induction remelting on plasma sprayed Ni-based coatings[J].Industrial Technology and Vocational Ed-ucation,2019,17(1):12-14(in Chinese).

    • [35] 孟莹,朱小鹏,杜鹏程,等.超音速火焰喷涂 Ni60-40WC 涂层高频感应重熔处理及其水润滑摩擦磨损性能 [J].材料保护,2018,51(12):82-89.MENG Y,ZHU X P,DU P C,et al.High frequency induc-tion remelting treatment of supersonic flame spraying Ni60-40WC coating and its water-lubricated friction and wear prop-erties[J].Materials Protection,2018,51(12):82-89(in Chinese).

    • [36] 吴勉,潘邻,童向阳,等.感应重熔技术及其在现代工业中的应用[J].表面工程与再制造,2017,17(S1):29-31.WU M,PAN L,TONG X Y,et al.Induction remelting technology and its application in modern industry[J].Sur-face Engineering and Remanufacturing,2017,17(S1):29-31(in Chinese).

    • [37] FUKUDAAND Y,KUMON M.Application of high velocity flamespraying for the heat exchanger tubes in coal fired boil-ers[C].Proceedings of ITSC′95.Japan:1995.107-110.

    • [38] 郗青旗.浅析垃圾焚烧炉排炉高温过热器防腐[J].中国资源综合利用,2013(8):32-34.TONG Q Q.Analysis on the anticorrosion of high temperature superheater in the waste incinerator [J].China Resources Comprehensive Utilization,2013(8):32-34(in Chinese).

    • [39] 任朝明.垃圾焚烧发电厂高温腐蚀机理及防护技术研究 [D].北京:华北电力大学,2018.REN C M.Research on high temperature corrosion mecha-nism and protection technology of waste incineration power plant[D].Beijing:North China Electric Power University,2018(in Chinese).

    • [40] 张瑞娜.生活垃圾焚烧锅炉过热器管束防护材料的腐蚀行为研究[J].工业锅炉,2017(1):12-15+21.ZHANG R N.Research on corrosion behavior of superheater tube bundle protective material for domestic waste incinera-tion boiler[J].Industrial Boiler,2017(01):12-15+21(in Chinese).

    • [41] LIU J,SUN F.Experimental study on operation regulation of a coupled high – low energy flue gas waste heat recovery sys-tem based on exhaust gas temperature control[J].Energies,2019,12(4):706.

    • [42] GALETZ M C,BAUER J T,SCHÜTZE M,et al.Resistance of coatings for boiler components of waste-to-energy plants to salt melts containing copper compounds[J].Journal of Ther-mal Spray Technology,2013,22(5):828-837.

    • [43] LUO W W,LIU Z D,WANG Y T,et al.High temperature corrosion behaviors of the superheater materials[J].Procedia Engineering,2012,36:212-216.

    • [44] UUSITALO M A,VUORISTO P M J,MÄNTYLÄ,et al.El-evated temperature erosion-corrosion of thermal sprayed coat-ings in chlorine containing environments[J].Wear,2002,252(7):586-594.

    • [45] OKSA M,TUURNA S,VARIS T.Increased lifetime for bio-mass and waste to energy power plant boilers with HVOF coatings:High temperature corrosion testing under chlorine-containing molten salt[J].Journal of Thermal Spray Tech-nology,2013,22(5):783-796.

    • [46] GALETZ M C,BAUER J T,SCHÜTZE M,et al.Resistance of coatings for boiler components of waste-to-energy plants to salt melts containing copper compounds[J].Journal of Ther-mal Spray Technology,2013,22(5):828-837.

    • [47] CHO S H,OH S C,PARK S B,et al.High temperature corrosion behavior of Ni-based alloys[J].Metals & Materials International,2012,18(6):939-949.

    • [48] BERLANGA-LABARI C,FERNÁNDEZ-CARRASQUILLA J.Review about corrosion of superheaters tubes in biomass plants[J].Revista de Metalurgia,2006,42(4):299-317.

    • [49] ZHANG J,RAHMAN Z U,WANG X,et al.Hot corrosion behaviors of TP347H and HR3C stainless steel with KCl de-posit in oxy-biomass combustion[J].Journal of Environmen-tal Management,2020,263:110411.

    • [50] OLEKSAK R,TYLCZAK J,HOLCOMB G,et al.High tem-perature oxidation of steels in CO2 containing impurities[J].Corrosion Science,2020,164:108316.

    • [51] HONG X,SHANGKUN Z,YIMING Z,et al.Experimental study on the effect of H2 S and SO2 on high temperature corro-sion of 12Cr1MoV[J].Chinese Journal of Chemical Engi-neering,2019,27(8):1956-1964.

    • [52] 蔡文博,王一坤,成汭珅,等.生物质Cl的析出迁移特性及对锅炉受热面腐蚀研究进展[J].热力发电,2019,48(12):1-7.CAI W B,WANG Y K,CHENG Y S,et al.Research on the characteristics of the precipitation and migration of bio-mass Cl and the corrosion of the boiler heating surface[J].Thermal Power Generation,2019,48(12):1-7(in Chi-nese).

    • [53] CHEN D N,ZHANG Z X,BIAN B,et al.Experimental study on high temperature corrosion of five superheater mate-rials for power plant boilers[J].Journal of Chinese Society of Power Engineering,2012,32(11):891-897.

    • [54] 朱文斌.生物质锅炉过热器受热面金属积灰腐蚀特性研究[D].济南:山东大学,2018.ZHU W B.Research on the corrosion characteristics of metal deposits on the heating surface of biomass boiler superheater [D].Jinan:Shandong University,2018(in Chinese).

    • [55] 刘小杰.氯在高炉内的反应行为研究[D].沈阳:东北大学,2015.LIU X J.Study on the reaction behavior of chlorine in blast furnace[D].Shenyang:Northeastern University,2015(in Chinese).

    • [56] 仝声,王治宙,康亚倩,等.碱金属氯化物对金属材料的高温腐蚀特性研究[J].洁净煤技术,2020,26(01):77-82.TONG S,WANG Z Z,KANG Y Q,et al.Research on high temperature corrosion characteristics of alkali metal chlorides on metal materials [J].Clean Coal Technology,2020,26(1):77-82(in Chinese).

    • [57] ZHANG H L,ZHANG F,SUN W,et al.Research and eval-uation of T91 superheater material for high temperature corro-sion in biomass power plants [J].Anti-Corrosion Methods and Materials,2015,62(3):133-135.

    • [58] 王旭.粉煤灰添加剂抑制生物质锅炉过热器金属腐蚀的作用规律研究[D].济南:山东大学,2019.WANG X.Study on the effect of fly ash additives on inhibi-ting metal corrosion of biomass boiler superheater [ D].Ji-nan:Shandong University,2019(in Chinese).

    • [59] 张述金,杜晓吉,云泓波.余热锅炉过热器管束腐蚀原因分析[J].设备管理与维修,2016(7):78-79.ZHANG S J,DU X J,YUN H B.Analysis of the corrosion of the superheater tube bundle of the waste heat boiler[J].E-quipment Management and Maintenance,2016(7):78-79(in Chinese).

    • [60] SANG S H,DUAN Y F,CHEN H C,et al.High temperature corrosion of superheater materials in chlorination-oxidation at-mosphere [ C].2013 3rd International Conference on Ad-vanced Measurement and Test(AMT 2013),2013:85-91.

  • 参考文献

    • [1] 张焕亨.李坑垃圾焚烧高温腐蚀试验研究[D].广州:华南理工大学,2013.ZHANG H H.Experimental study on high temperature corro-sion of likeng waste incineration [ D].Guangzhou South China University of Technology,2013(in Chinese).

    • [2] 白贤祥,张玉刚.生活垃圾焚烧厂余热锅炉水冷壁高温腐蚀治理研究[J].环境卫生工程,2018,26(3):68-70,74.BAI X X,ZHANG Y G.Research on high temperature corro-sion treatment of water cooled wall of waste heat boiler in do-mestic waste incineration plant[J].Environmental SanitationEngineering,2018,26(3):68-70,74(in Chinese).

    • [3] 胥杨,陈文觉,陈乐,等.某台垃圾焚烧炉过热器失效分析[J].锅炉技术,2019,50(1):55-60.XU Y,CHEN W J,CHEN L,et al.Failure analysis of a su-perheater in a garbage incinerator [J].Boiler Technology,2019,50(1):55-60(in Chinese).

    • [4] 蒋旭光,刘晓博.垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J].中国腐蚀与防护学报,2020,40(03):205-214.JIANG X G,LIU X B.Research progress and direction thinking on key heating surface corrosion of garbage incinera-tion boilers[J].Journal of Chinese Society for Corrosion and Protection,2020,40(3):205-214(in Chinese).

    • [5] 魏琪,王瑞,李辉,等.循环流化床锅炉焚烧垃圾腐蚀现状及防护研究进展[J].锅炉技术,2011,42(3):57-59.WEI Q,WANG R,LI H,et al.Current status of corrosion of circulating fluidized bed boiler incineration and protection research progress [J].Boiler Technology,2011,42(3):57-59(in Chinese).

    • [6] 魏琪,王瑞,李辉,等.高温氯化腐蚀现状及防护研究 [C].第十三届国际热喷涂研讨会(ITSS′2010)暨第十四届全国热喷涂年会(CNTSC′2010),2010:70-73.WEI Q,WANG R,LI H,et al.Current status of high-tem-perature chlorinated corrosion and its protection [ C].The Thirteenth International Thermal Spraying Seminar(ITSS′ 2010)and the Tenth Proceedings of the 4th National Thermal Spraying Annual Conference(CNTSC′2010),2010:70-73(in Chinese).

    • [7] BANKIEWICZ D,ENESTAM S,YRJAS P,et al.Experi-mental studies of Zn and Pb induced high temperature corro-sion of two commercial boiler steel [J].Fuel Processing Technology,2013,105:89-97.

    • [8] LEE S H,THEMELIS N J,CASTALDI M J.High-tempera-ture corrosion in waste-to-energy boilers[J].Journal of Ther-mal Spray Technology,2007,16(1):104-110.

    • [9] KARLSSON S,PETTERSSON J,JOHANSSON L G,et al.Alkali induced high temperature corrosion of stainless steel:The influence of NaCl,KCl and CaCl2 [J].Oxidation of Metals,2012,78:83-102.

    • [10] LIU J,DYSON D,ASSELIN E.Long-term hot corrosion be-havior of boiler tube alloys in waste-to-energy plants[J].Ox-idation of Metals,2016,86(1-2):135-149.

    • [11] HUNSINGER H,ANDERSSON S.The potential of SO2 for reducing corrosion in WtE plants[J].Journal of Material Cy-cles and Waste Management,2014,16(4):657-664.

    • [12] MIN’KO N I,LAZAREVA E A.Protection of nichrome-al-loy articles from high-temperature corrosion(Review)[J].Springer US,2018,75(5-6).

    • [13] 徐火力,杨家燚.垃圾焚烧锅炉过热器腐蚀原因分析及对策[J].能源与环境,2018(1):30-32.XU H L,YANG J Y.Analysis and Countermeasures of corro-sion causes of superheater in waste incineration boiler[J].Energy and Environment,2018(1):30-32(in Chinese).

    • [14] LI N,VAINIO E,HUPA L,et al.Interaction of high Al2O3 refractories with alkaline salts containing potassium and sodi-um in biomass and waste combustion[J].Energy & Fuels,2018,32(12):12971-12980.

    • [15] ZHAO Q,LIANG Z,JIANG W.Studies on high temperature corrosion of austenitic heat-resistant steels Super 304H/10Cr18Ni9Cu3NbN in simulated and real combustion gas at-mospheres[J].Energy Materials,2014,243-250.

    • [16] 郑明,王小红,张勇,等.余热锅炉直升烟道水冷壁腐蚀分析与预防[J].湖南有色金属,2015,31(6):48-50.ZHENG M,WANG X H,ZHANG Y,et al.Analysis and prevention of corrosion of water-cooled wall of the direct heat flue of waste heat boiler [J].Hunan Nonferrous Metals,2015,31(6):48-50(in Chinese).

    • [17] 范蕙萍.垃圾焚烧炉水冷膜式壁堆焊高温合金技术分析 [J].河南科技,2018(8):25-26.FAN H P.Technical analysis of water-cooled film wall surfa-cing welding superalloys in waste incinerator[J].Henan Sci-ence and Technology,2018(8):25-26(in Chinese).

    • [18] 王迪.垃圾焚烧余热锅炉高温腐蚀及其防腐方法研究 [J].电站系统工程,2014,30(4):75-76,78.WANG D.Research on high temperature corrosion and an-ticorrosion methods of waste incineration waste heat boilers [J].Power System Engineering,2014,30(4):75-76,78(in Chinese).

    • [19] 孙胜英.合金成分设计对含铝奥氏体耐热钢组织和性能的影响[D].北京:北京科技大学,2019.SUN S Y.The effect of alloy composition design on the struc-ture and properties of aluminum-containing austenitic heat-re-sistant steel [D].Beijing:University of Science and Tech-nology Beijing,2019(in Chinese).

    • [20] 杨波,钟志强,黄巧贤,等.垃圾焚烧锅炉的高温氯腐蚀研究进展[J].广东电力,2016,29(6):5-11,17.YANG B,ZHONG Z Q,HUANG Q X,et al.Research pro-gress on high temperature chlorine corrosion of garbage incin-eration boilers [J].Guangdong Electric Power,2016,29(6):5-11,17(in Chinese).

    • [21] 孙焕焕,刘爱国,孟凡玲.堆焊 Inconel 625 合金的锅炉膜式水冷壁组织和性能[J].材料热处理学报,2013,34(S2):96-99.SUN H H,LIU A G,MENG F L.Microstructure and proper-ties of boiler membrane water-cooled wall of surfacing welding Inconel 625 alloy[J].Journal of Materials Heat Treatment,2013,34(S2):96-99(in Chinese).

    • [22] 徐兵.MIG 立向下堆焊 Inconel 625 焊接工艺研究[J].压力容器,2019,36(12):70-74.XU B.Research on the surfacing technology of MIG vertical-down surfacing Inconel 625[J].Pressure Vessel,2019,36(12):70-74(in Chinese).

    • [23] 邱留良,边浩疆.垃圾发电厂锅炉受热面CMT堆焊 In-conel 625 镍基材料技术分析[J].科学技术创新,2018(18):167-168.QIU L L,BIAN H J.Technical analysis of CMT overlay welding of Inconel 625 nickel-based material on the heating surface of a boiler in a waste power plant[J].Science and Technology Innovation,2018(18):167-168(in Chi-nese).

    • [24] 李俊辰,付俊波,何勇,等.爆炸喷涂的研究进展及发展趋势[J].热加工工艺,2020(14):20-24.LI J C,FU J B,HE Y,GUO S Q,et al.Research progressand development trend of detonation spraying [J].ThermalProcessing Technology,2020(14):20-24(in Chinese).

    • [25] THAKARE J G,PANDEY C,MULIK R S,et al.Micro-structure and mechanical properties of D-Gun sprayed Cr3C2-NiCr coating on P91 steel subjected to long term thermal ex-posure at 650 ℃ [J].Materials Research Express,2019,6(11):1165h1.

    • [26] 刘康生.80Ni20Cr/Inconel 625 涂层的制备及在模拟垃圾焚烧炉烟气侧的腐蚀行为研究[D].南昌:南昌航空大学,2017.LIU K S.Preparation of 80Ni20Cr/Inconel 625 coating and its corrosion behavior on simulated flue gas side of waste in-cinerator[D].Nanchang:Nanchang Aeronautical Universi-ty,2017(in Chinese).

    • [27] SADEGHI E,MARKOCSAN N,JOSHI S V.Advances in corrosion-resistant thermal spray coatings for renewable ener-gy power plants:Part II-effect of environment and outlook [J].Journal of Thermal Spray Technology,2019,28(8):1789-1850.

    • [28] THAKARE J G,MULIK R S,MAHAPATRA M M.Evalua-tion of cyclic hot corrosion resistance of plasma-sprayed com-posite coating in Na2 SO4-60%V2O5 molten salt environment [J].Journal of Thermal Spray Technology,2020,29(4):811 – 824.

    • [29] 王利,周正,王国红,等.垃圾焚烧炉热腐蚀问题的表面防护技术[J].热喷涂技术,2017,9(1):1-6.WANG L,ZHOU Z,WANG G H,et al.Surface protection technology for thermal corrosion of waste incinerators [J].Thermal Spray Technology,2017,9(1):1-6(in Chi-nese).

    • [30] 章坤,郭华彬,孟祥瑞,等.激光重熔处理对高Cr涂层抗高温氧化性的影响及分析 [J].金属功能材料,2018,25(4):17-21.ZHANG K,GUO H B,MENG X R,et al.Effect and analy-sis of laser remelting treatment on high temperature oxidation resistance of high Cr coatings[J].Functional Metal Materi-als,2018,25(4):17-21(in Chinese).

    • [31] YUUZOU K.An overview on corrosion-resistant coating tech-nologies in biomass/waste-to-energy plants in recent decades [J].Coatings,2016,6(3):34.

    • [32] KAWAHARA Y,MATSUBARA Y.Advanced coating tech-nologies for aggressive corrosion environments in wte and power plants[C].International symposium on high-tempera-ture oxidation and corrosionISHOC-10,2011:302-307.

    • [33] 赵娜娜.浅析垃圾焚烧发电厂水冷壁防腐措施[J].科技风,2020(1):106+121.ZHAO N N.Analysis of anti-corrosion measures for water-cooled wall of garbage incineration power plant[J].Science and Technology Wind,2020(1):106+121(in Chinese).

    • [34] 孙浩东,孟宏杰,卢琦,等.高频感应重熔对等离子喷涂Ni基涂层的影响研究[J].工业技术与职业教育,2019,17(1):12-14.SUN H D,MENG H J,LU Q,et al.Study on the effect of high frequency induction remelting on plasma sprayed Ni-based coatings[J].Industrial Technology and Vocational Ed-ucation,2019,17(1):12-14(in Chinese).

    • [35] 孟莹,朱小鹏,杜鹏程,等.超音速火焰喷涂 Ni60-40WC 涂层高频感应重熔处理及其水润滑摩擦磨损性能 [J].材料保护,2018,51(12):82-89.MENG Y,ZHU X P,DU P C,et al.High frequency induc-tion remelting treatment of supersonic flame spraying Ni60-40WC coating and its water-lubricated friction and wear prop-erties[J].Materials Protection,2018,51(12):82-89(in Chinese).

    • [36] 吴勉,潘邻,童向阳,等.感应重熔技术及其在现代工业中的应用[J].表面工程与再制造,2017,17(S1):29-31.WU M,PAN L,TONG X Y,et al.Induction remelting technology and its application in modern industry[J].Sur-face Engineering and Remanufacturing,2017,17(S1):29-31(in Chinese).

    • [37] FUKUDAAND Y,KUMON M.Application of high velocity flamespraying for the heat exchanger tubes in coal fired boil-ers[C].Proceedings of ITSC′95.Japan:1995.107-110.

    • [38] 郗青旗.浅析垃圾焚烧炉排炉高温过热器防腐[J].中国资源综合利用,2013(8):32-34.TONG Q Q.Analysis on the anticorrosion of high temperature superheater in the waste incinerator [J].China Resources Comprehensive Utilization,2013(8):32-34(in Chinese).

    • [39] 任朝明.垃圾焚烧发电厂高温腐蚀机理及防护技术研究 [D].北京:华北电力大学,2018.REN C M.Research on high temperature corrosion mecha-nism and protection technology of waste incineration power plant[D].Beijing:North China Electric Power University,2018(in Chinese).

    • [40] 张瑞娜.生活垃圾焚烧锅炉过热器管束防护材料的腐蚀行为研究[J].工业锅炉,2017(1):12-15+21.ZHANG R N.Research on corrosion behavior of superheater tube bundle protective material for domestic waste incinera-tion boiler[J].Industrial Boiler,2017(01):12-15+21(in Chinese).

    • [41] LIU J,SUN F.Experimental study on operation regulation of a coupled high – low energy flue gas waste heat recovery sys-tem based on exhaust gas temperature control[J].Energies,2019,12(4):706.

    • [42] GALETZ M C,BAUER J T,SCHÜTZE M,et al.Resistance of coatings for boiler components of waste-to-energy plants to salt melts containing copper compounds[J].Journal of Ther-mal Spray Technology,2013,22(5):828-837.

    • [43] LUO W W,LIU Z D,WANG Y T,et al.High temperature corrosion behaviors of the superheater materials[J].Procedia Engineering,2012,36:212-216.

    • [44] UUSITALO M A,VUORISTO P M J,MÄNTYLÄ,et al.El-evated temperature erosion-corrosion of thermal sprayed coat-ings in chlorine containing environments[J].Wear,2002,252(7):586-594.

    • [45] OKSA M,TUURNA S,VARIS T.Increased lifetime for bio-mass and waste to energy power plant boilers with HVOF coatings:High temperature corrosion testing under chlorine-containing molten salt[J].Journal of Thermal Spray Tech-nology,2013,22(5):783-796.

    • [46] GALETZ M C,BAUER J T,SCHÜTZE M,et al.Resistance of coatings for boiler components of waste-to-energy plants to salt melts containing copper compounds[J].Journal of Ther-mal Spray Technology,2013,22(5):828-837.

    • [47] CHO S H,OH S C,PARK S B,et al.High temperature corrosion behavior of Ni-based alloys[J].Metals & Materials International,2012,18(6):939-949.

    • [48] BERLANGA-LABARI C,FERNÁNDEZ-CARRASQUILLA J.Review about corrosion of superheaters tubes in biomass plants[J].Revista de Metalurgia,2006,42(4):299-317.

    • [49] ZHANG J,RAHMAN Z U,WANG X,et al.Hot corrosion behaviors of TP347H and HR3C stainless steel with KCl de-posit in oxy-biomass combustion[J].Journal of Environmen-tal Management,2020,263:110411.

    • [50] OLEKSAK R,TYLCZAK J,HOLCOMB G,et al.High tem-perature oxidation of steels in CO2 containing impurities[J].Corrosion Science,2020,164:108316.

    • [51] HONG X,SHANGKUN Z,YIMING Z,et al.Experimental study on the effect of H2 S and SO2 on high temperature corro-sion of 12Cr1MoV[J].Chinese Journal of Chemical Engi-neering,2019,27(8):1956-1964.

    • [52] 蔡文博,王一坤,成汭珅,等.生物质Cl的析出迁移特性及对锅炉受热面腐蚀研究进展[J].热力发电,2019,48(12):1-7.CAI W B,WANG Y K,CHENG Y S,et al.Research on the characteristics of the precipitation and migration of bio-mass Cl and the corrosion of the boiler heating surface[J].Thermal Power Generation,2019,48(12):1-7(in Chi-nese).

    • [53] CHEN D N,ZHANG Z X,BIAN B,et al.Experimental study on high temperature corrosion of five superheater mate-rials for power plant boilers[J].Journal of Chinese Society of Power Engineering,2012,32(11):891-897.

    • [54] 朱文斌.生物质锅炉过热器受热面金属积灰腐蚀特性研究[D].济南:山东大学,2018.ZHU W B.Research on the corrosion characteristics of metal deposits on the heating surface of biomass boiler superheater [D].Jinan:Shandong University,2018(in Chinese).

    • [55] 刘小杰.氯在高炉内的反应行为研究[D].沈阳:东北大学,2015.LIU X J.Study on the reaction behavior of chlorine in blast furnace[D].Shenyang:Northeastern University,2015(in Chinese).

    • [56] 仝声,王治宙,康亚倩,等.碱金属氯化物对金属材料的高温腐蚀特性研究[J].洁净煤技术,2020,26(01):77-82.TONG S,WANG Z Z,KANG Y Q,et al.Research on high temperature corrosion characteristics of alkali metal chlorides on metal materials [J].Clean Coal Technology,2020,26(1):77-82(in Chinese).

    • [57] ZHANG H L,ZHANG F,SUN W,et al.Research and eval-uation of T91 superheater material for high temperature corro-sion in biomass power plants [J].Anti-Corrosion Methods and Materials,2015,62(3):133-135.

    • [58] 王旭.粉煤灰添加剂抑制生物质锅炉过热器金属腐蚀的作用规律研究[D].济南:山东大学,2019.WANG X.Study on the effect of fly ash additives on inhibi-ting metal corrosion of biomass boiler superheater [ D].Ji-nan:Shandong University,2019(in Chinese).

    • [59] 张述金,杜晓吉,云泓波.余热锅炉过热器管束腐蚀原因分析[J].设备管理与维修,2016(7):78-79.ZHANG S J,DU X J,YUN H B.Analysis of the corrosion of the superheater tube bundle of the waste heat boiler[J].E-quipment Management and Maintenance,2016(7):78-79(in Chinese).

    • [60] SANG S H,DUAN Y F,CHEN H C,et al.High temperature corrosion of superheater materials in chlorination-oxidation at-mosphere [ C].2013 3rd International Conference on Ad-vanced Measurement and Test(AMT 2013),2013:85-91.

  • 手机扫一扫看