- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杨学锋(1977—),男,教授,博士;研究方向:摩擦润滑理论及工程应用;E-mail:me_yangxf@ujn.edu.cn

中图分类号:TH117

文献标识码:A

文章编号:1007-9289(2020)03-0018-15

DOI:10.11933/j.issn.1007-9289.20200509001

参考文献 1
张永辉.利用表面织构改善超高分子量聚乙烯润滑特性的研究[D].南京:南京航空航天大学,2009.ZHANG Y H.Improving the tribological performance of UH-MWPE with surface texture[D].Nanjing:Nanjing Universi-ty of Aeronautics and Astronautics,2009(in Chinese).
参考文献 2
BHUSHAN B.摩擦学导论[M].北京:机械工业出版社,2007.BHUSHAN B.Introduction to tribology[M].Beijing:Pow-ered by Site Engine,2007(in Chinese).
参考文献 3
马付良,曾志翔,高义民,等.仿生表面减阻的研究现状与进展[J].中国表面工程,2016,29(1):7-15.MA F L,ZENG Z X,GAO Y M,et al.Research status and progress of bionic surface drag reduction[J].China Surface Engineering,2016,29(1):7-15(in Chinese).
参考文献 4
XU Q,WAN Y,HU T S,et al.Robust self-cleaning and micro manipulation capabilities of gecko spatulate and their bio-mimics[J].Nature Communication,2015(6):8949.
参考文献 5
杨宗榕,郭智威,袁成清.仿生微胶囊复合水润滑轴承材料的摩擦性能研究[J].摩擦学学报,2018,38(1):28-36.YANG Z R,GUO Z W,YUAN C Q.Tribological properties of water-lubricated stern bearing composites modified with bi-omimetic microcapsules[J].Tribology,2018,38(1):28-36(in Chinese).
参考文献 6
LIU C,ZHU L,BU W,et al.Super hydrophobic surfaces:From nature to bio mimetic through VOF simulation[J].Mi-cron,2018,107:94-100.
参考文献 7
DOWSON D,NEVILLE A.Bio-tribology and bio-mimetics in the operating environment[J].Proceedings of the Institu-tion of Mechanical Engineers Part J-Journal of Engineering Tribology,2006,220(J3):109-123.
参考文献 8
GUO Z W,YUAN C Q,LIU A X,et al.Study on tribologi-cal properties of novel bio mimetic material for water-lubri-cated stern tube bearing[J].Wear,2017,376-377:911-919.
参考文献 9
汪久根,陈仕洪,王庆九.仿生菱形表面织构对高速列车摩擦噪声的影响[J].交通运输工程学报,2014(1):43-48.WANG J G,CHEN S H,WANG Q J.Effect of bionic rhom-bic surface texture on frictional noise of high-speed train[J].Journal of Traffic & Transportation Engineering,2014(1):43-48(in Chinese).
参考文献 10
ALI F,KANETA M,KRUPKA I,et al.Experimental and numerical investigation on the behavior of transverse limited micro-grooves in EHL point contacts[J].Tribology Interna-tional,2015,84(S1):81-89.
参考文献 11
刘东雷,孟小霞,袁春俭,等.多种规则微造型表面摩擦特性的试验研究[J].润滑与密封,2008,33(7):28-31.LIU D L,MENG X X,YUAN C J,et al.Research on tribo-logical performance of texturing surfaces[J].Lubrication En-gineering,2008,33(7):28-31(in Chinese).
参考文献 12
孙艺文,汝绍锋,丛茜.仿生凹坑形钻井泥浆活塞磨损寿命试验[J].石油学报,2017,38(2):234-240.SUN Y W,RU S F,CONG Q.Wear-life experiment of drill-ing mud pump piston with dimple-shaped bionic surface[J].Acta Petrolei Sinica,2017,38(2):234-240(in Chi-nese).
参考文献 13
YU H Y,ZHANG H C,GUO Y C,et al.Thermodynamic a-nalysis of shark skin texture surfaces for micro channel flow [J].Continuum Mechanics and Thermodynamics,2016(28):1361-1371.
参考文献 14
ZHENG L,WU J J,ZHANG S,et al.Bionic coupling of hardness gradient to surface texture for improved anti-wear properties[J].Journal of Bionic Engineering,2016,13(3):406-415.
参考文献 15
韩鑫,张德远,李翔,等.大面积鲨鱼皮复制制备仿生减阻表面研究[J].科学通报,2008,53(7):838-842.HAN X,ZHANG D Y,LI X,et al.Study on preparation of biomimetic drag reduction surface by large-area shark skin replication[J].Chinese Science Bulletin,2008,53(7):838-842(in Chinese).
参考文献 16
黄志平.基于结构仿生的鲨鱼皮微沟槽复制技术基础研究[D].大连:大连理工大学,2012:1-78.HUANG Z P.Basic study on republication technology of mi-cro-riblets of shark skin based on structural bionics [ D].Dalian:Dalian University of Technology,2012:1-78(in Chinese).
参考文献 17
韩鑫,张德远.鲨鱼皮微电铸复制工艺研究[J].农业机械学报,2011,42(2):229-234.HAN X,ZHANG D Y.Replication of shark skin based on micro-electroforming[J].Transactions of the Chinese Society of Agricultural Machinery,2011,42(2):229-234(in Chi-nese).
参考文献 18
BIXLER G D,BHUSHAN B.Bioinspired rice leaf and but-terfly wing surface structures combining shark skin and lotus effects[J].Soft Matter,2012,8(44):12139-12143.
参考文献 19
任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报,2003,34(2):86-88,96.REN L Q,WANG Z Z,HAN Z B.Experimental research on sliding wear of bionic nonsmoothed surface[J].Transactions of the Chinese Society for Agricultural Machinery,2003,34(2):86-92(in Chinese).
参考文献 20
韩志武,许小侠,任露泉.凹坑形非光滑表面微观摩擦磨损试验回归分析[J].摩擦学学报,2005,25(6):578-582.HAN Z B,XU X X,REN L Q.Regression analysis of micro-friction and wear on concave non-smooth surface[J].Tribol-ogy,2005,25(6):578-582(in Chinese).
参考文献 21
WANG K,HE B,LI M H,et al.Fabrication of biomimetic wet adhesive pads with surface microstructures by combining electroforming with soft lithography[J].Surface Engineering & Applied Electrochemistry,2012,48(2):99-104.
参考文献 22
WANG K,SHEN R J,HE B.Influence of surface roughnesson wet adhesion of biomimetic adhesive pads with planar mi-crostructures[J].Micro & Nano Letters,2012,7(12):1274-1277.
参考文献 23
缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO C W,GUO Z W,YUAN C Q.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30(in Chi-nese).
参考文献 24
李俊玲,陈平,邵天敏,等.葫芦形微凹坑对不锈钢表面摩擦学性能的影响[J].摩擦学学报,2016,36(2):207-214.LI J L,CHEN P,SHAO T M,et al.The effect of gourd-shaped surface texture on tribological performance of stainless steel[J].Tribology,2016,36(2):207-214(in Chi-nese).
参考文献 25
GAO X,CHEN Q,TENG H D.Primary resonance analysis of solid and liquid mixture vibration isolation system [J].Chinese Journal of Mechanical Engineering,2012,48(15):90-95.
参考文献 26
李兵,刘焜,王静,等.线接触滑———滚条件下微凹坑表面摩擦特性[J].机械工程学报,2011,47(21):91-96.LI B,LIU K,WANG J,et al.Micro cavity’ s tribological property under line contact and sliding-rolling conditions[J].Journal of Mechanical Engineering,2011,47(21):91-96(in Chinese).
参考文献 27
马晨波,朱华,历建全.摩擦副不同表面织构化的润滑减摩性能试验研究[J].中国矿业大学学报,2010,39(2):244-248.MA C B,ZHU H,LI J Q.Experimental study of tribological properties of texture on different surfaces of frictional pairs [J].Journal of China University of Mining & Technology,2010,39(2):244-248(in Chinese).
参考文献 28
GREGORY D BIXLER,BHUSHAN B.Fluid drag reduction with shark-skin riblet inspired micro structured surfaces[J].Advanced Functional Materials,2013,23(36):4507-4528.
参考文献 29
杨洪秀.活塞缸套系统仿生非光滑界面摩擦与润滑机理的研究[D].长春:吉林大学,2008.YANG H X.Study on friction and lubrication mechanism of bionic non-smooth interface in piston liner system [ D].Changchun:Jilin University,2008(in Chinese).
参考文献 30
钱权.典型沟槽表面隔水管减阻性能研究[D].成都:西南石油大学,2018.QIAN Q.Study on drag reduction performance of riser on typ-ical groove surface[D].Chengdu:Southwest Petrole-Uni-versity,2018(in Chinese).
参考文献 31
SONG X W,LIN P Z,LIU R,et al.Skin friction reduction characteristics of variable ovoid non-smooth surface [J].Journal of Zhejiang University(Science A),2017,18(1):59-66.
参考文献 32
AOKIK,MUTOK,OKANAGAH.Aerodynamic characteris-tics and flow pattern of a golf ball with rotation[J].Procedia Engineering,2010,2(2):2431-2436.
参考文献 33
ALAMF,STEINERT,CHOWDHURYH,et al.A study of golf ball aerodynamic drag[J].Procedia Engineering,2011,13:226-231.
参考文献 34
陈子飞,许季海,赵文杰,等.仿甲鱼壳织构化有机硅改性丙烯酸酯涂层的制备及其防污行为[J].中国表面工程,2013,26(6):80-85.CHEN Z F,XU J H,ZHAO W J,et al.Preparation and an-tifouling performance of organic silicone coatings with turtle bionic texture [J].China Surface Engineering,2013,26(6):80-85(in Chinese).
参考文献 35
刘先兰,屠家贵,金潇明.仿生非光滑表面技术在机械工程中的应用[J].新技术新工艺,2012,40(5):21-24.LIU X L,TU J G,JIN X M.Application of bionic and non-smooth surface technic on mechanical engineering[J].New Technology & New Process,2012,40(5):21-24(in Chi-nese).
参考文献 36
CHENG X J,RU S F,SUN Y W,et al.Wear performance of bionic strip-shaped mud pump pistons[J].Proceedings of the Institution of Mechanical Engineers Part C-journal of Me-chanical Engineering Science,2017,231(21):4076-4084.
参考文献 37
王立新,吴树静,李山山.工程仿生领域猪笼草叶笼研究现状及发展趋势[J].河北科技大学学报,2018,39(3):221-231.WANG L X,WU S J,LI S S.Research progress and devel-opment prospect of Nepenthes pitcher in engineering bionics field[J].Journal of Hebei University of Science and Tech-nology,2018,39(3):221-231(in Chinese).
参考文献 38
BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contaminants in biological surfaces[J].Plan-ta,1997,202(1):1-8.
参考文献 39
SCHOOL I,BARNES W J,SMITH J M,et al.Ultrastruc-ture and physical properties of an adhesive surface,the toe pad epithelium of the tree frog,litoria caerulea white [J].Journal of Experimental Biology,2009,212(2):155-162.
参考文献 40
DAVIES J,HAQ S,HAWKE T,et al.A practical approach to the development of a synthetic gecko tape[J].Internation-al Journal of Adhesion and Adhesives,2009,29(4):380-390.
参考文献 41
常琪.仿生表面织构的摩擦及粘附性能研究[D].南京:南京航空航天大学,2018.CHANG Q.Research on the friction and adhesion properties of bionic surface texture[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018(in Chinese).
参考文献 42
鹿重阳.异形织构化刀具表面涂层制备及摩擦磨损特性研究[D].济南:济南大学,2019.LU C Y.Study on preparation and friction and wear charac-teristics of surface coating for special-shaped textured cutting tools[D].Jinan:University of Jinan,2019(in Chinese).
参考文献 43
COSTIL S,LAMRAOUI A,LANGLADE C,et al.Surface modifications induced by pulsed-laser texturing-influence of laser impact on the surface properties[J].Applied Surface Science,2014,288(1):542-549.
参考文献 44
CHOUDHURY D,ROY T,KRUPKA I,et al.Tribological investigation of ultra-high molecular w-eight polyethylene a-gainst advanced ceramic surfaces in total hip joint replace-ment[J].Proceedings of the Institution of Mechanical Engi-neers,Part J:Journal of Engineering Tribology,2014,229(4):410-419.
参考文献 45
WAKUDA M,YAMAUCHI Y,KANZAKI S,et al.Effect ofsurface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact [J].Wear,2003,254(3-4):356-363.
参考文献 46
解宝成,崔贺新,张元,等.微细电火花微孔加工技术的发展现状[J].哈尔滨理工大学学报,2018,23(4):25-30.XIE B C,CUI H X,ZHANG Y,et al.Current research of micro electrical discharge machining of micro-hole[J].Jour-nal of Harbin University of Science and Technology,2018,23(4):25-30(in Chinese).
参考文献 47
陈娟,陶亮.激光技术制备刀具表面织构的研究进展 [J].河南科技,2018(32):32-34.CHEN J,TAO L.Research progress of tool surface texture fabricated by laser processing[J].Journal of Henan Science and Technology,2018(32):32-34(in Chinese).
参考文献 48
OKAZAKI S.High resolution optical lithography or high throughput electron beam lithography:The technical struggle from the micro to thenano-fabrication evolution[J].Micro E-lectronic Engineering,2015,133:23-35.
参考文献 49
李运玺.拉拔模具织构化工作表面摩擦特性研究[D].济南:济南大学,2017.LI Y X.Study on tribological properties of textured working surface on conical dies [ D].Jinan:University of Jinan,2017(in Chinese).
参考文献 50
尹必峰,卢振涛,刘胜吉,等.缸套表面织构润滑性能理论及试验研究[J].机械工程学报,2012,48(21):91-96.YIN B F,LU Z T,LIU S J,et al.Theoretical and experi-mental study on lubrication performance of composite textures on cylinder liners[J].Journal of Mechanical Engineering,2012,48(21):91-96(in Chinese).
参考文献 51
余广,曾良才,毛阳,等.液压缸活塞表面微织构动压润滑性能分析 [J].机械科学与技术,2017,36(12):1823-1829.YU G,ZENG L C,MAO Y,et al.Analysis on hydrodynam-ic lubrication performance of micro-texture on hydraulic cylin-der piston surface[J].Mechanical Science and Technology for Aerospace Engineering,2017,36(12):1823-1829(in Chinese).
参考文献 52
WANG J Q,WANG X L.State of the art in innovative design of surface texture [J].Journal of Mechanical Engineering,2015,23:84-95.
参考文献 53
DEAN B,BHUSHAN B.Shark-skin surfaces for fluid-drag reduction in turbulent flow:A review.Philosophical transac-tions of the royal society a.Mathematical,Physical and En-gineering Sciences,2010,368:4775-4806.
参考文献 54
杨弘炜,高歌.一种新型边界层控制技术应用于湍流减阻的试验研究[J].航空学报,1997,18(4):455-457.YANG H W,GAO G.Experimental study for turbulent drag reduction using a noval boundary control technique[J].Acta Aeronautics and Astronautics Sinica,1997,18(4):455-457(in Chinese).
参考文献 55
LIM H C,LEE S J.Flow control of a circular cylinder with 0-rings[J].Fluid Dynamics Research,2004,35:107-122.
参考文献 56
ZHANG X,SHI F,NIU J,et al.Superhydrophobic sur-faces:From structural control to functional application[J].Journal of Materials Chemistry.2008,18(6):621-633.
参考文献 57
TAMESUE S,TAKAHASHI E,KOSUGI S,et al.Fabrica-tion of a poly(dimethylsiloxane)micro structured surface im-printed from patterned silicon wafer with a self-cleaning prop-erty[J].Polymer Journal.2016,48(7):835-838.
参考文献 58
XUE C H,MA J Z.Long-lived superhydrophobic surfaces [J].Journal of Materials Chemistry A,2013,1(13):4146-4161.
参考文献 59
杨统林.仿生超疏水表面的制备及其性能研究[D].南昌:南昌大学,2018.YANG T L.Studies on fabrication and properties of biomime-tic superhydrophobic surfaces[D].Nanchang:Nanchang U-niversity,2018(in Chinese).
参考文献 60
于海武.基于流体动压润滑效应的表面织构优化设计 [D].南京:南京航空航天大学,2011.YU H W.Optimal design of surface texture based on hydro-dynamic lubrication [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011(in Chinese).
参考文献 61
张成春,任露泉,王晶.旋成体仿生凹环表面减阻试验分析及数值模拟[J].吉林大学学报(工),2007,37(1):100-105.ZHANG C C,REN L Q,WANG J.Experiment and numeri-cal simulation on drag reduction for bodies of revolution using bionic scrobiculate ringed surface[J].Journal of Jilin Uni-versity(Engineering),2007,37(1):100-105(in Chi-nese).
参考文献 62
陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN D R.Cavitation and cavitation erosion [J].China Basic Science,2010,12(6):3-7(in Chinese).
参考文献 63
WALSHMJ.Turbulent boundary layer drag reduction using [C]∥20th aerospace sciences meeting.Orlando:Aerospace Sciences Meeting,1982:82-169.
目录contents

    摘要

    随着经济的发展,机械加工零件表面的减阻耐磨及抗黏等性能变得尤为重要,为了提高生产加工过程的高效性和节能性,针对零件的表面问题引入仿生织构的概念。 仿生织构是仿照生物体表特殊的纹理在摩擦副表面加工出能够实现减摩降阻润滑效果的微/ 纳结构。 介绍了多种具非光滑结构表面生物,综述了几种典型仿生织构类型,阐明了每种织构类型的摩擦磨损机理;从织构类型、结构设计和加工方法、压强分布、摩擦因数和机理分析、应用与展望等方面进行评述,对应用最为广泛的凹坑型和沟槽型织构结合实例分析其摩擦磨损性能并附以数据论证,通过摩擦因数和磨损机理判断织构的减摩降阻效果,从而进一步实现参数优化。 分析表明:仿生织构对改善摩擦性能具有重要影响,其中摩擦因数是判断摩擦性能的重要因素,加以磨损机理的深入研究,使得减阻耐磨效果较优的织构类型可大幅提高工业效率,结合工业、航天、 汽车等行业中对仿生织构的应用,展望未来仿生织构的广泛研究及在摩擦过程中性能的优化,实现织构化普及应用。

    Abstract

    With the development of economy, the anti-friction, wear-resisting and anti-adhesion properties on the surface of machining parts become particularly important. In order to improve the efficiency and energy saving of the production and processing process, the concept of bionic texture is introduced for the surface problems of parts. Biomimetic texture is a micro / nano structure which can be processed on the surface of friction pair after the special texture of biological body surface. This paper introduces a variety of surface organisms with non-smooth structure, summarizes several typical biomimetic texture types, and elucidates the friction and wear mechanism of each texture type. From the texture type, structural design and machining method, the pressure distribution, the coefficient of friction and mechanism analysis, application and prospect are reviewed, the most widely used type pits and grooves texture combined with examples to analyze its friction and wear performance and provide data by the coefficient of friction and wear mechanism of the assessment of the effect of friction reduction texture, thus further realize parameters optimization. Analysis shows that the bionic texture has important influence on the performance of improved friction, the coefficient of friction is an important factor to determine the friction performance, to the further research of wear mechanism, makes the effect of drag reduction wear-resisting optimal texture types can dramatically improve the efficiency of industry, combining industry, aerospace, automobile and other industries in the application of bionic texture, looking to the future bionic texture of extensive research and in the process of friction performance optimization, realizing the texture to popularize and apply.

  • 0 引言

  • 机械工业是装备制造业的重要组成部分,是国民经济和工业的重要支柱和主导产业。然而, 机械工业飞速发展的同时,也会带来环境污染和能源浪费问题,例如机械零部件的损坏失效就是一种资源浪费。机械摩擦引起的磨损是造成零部件损坏的主要原因之一[1-2],而过大的摩擦阻力和恶劣的润滑条件是造成磨损的主要因素。为减少机械部件的磨损,一方面可考虑改善其工况或摩擦副间的接触摩擦力,另一方面可考虑在摩擦副表面加工仿生织构,仿照生物体表加工的微/纳织构来改善其摩擦磨损性能[3-6],仿生织构的研究催生了仿生摩擦学[7] 的形成。仿生摩擦学可分为材料仿生[8] 与织构仿生[9] 两大组成部分,其作为近几十年的新兴学科,为摩擦学的广泛研究奠定了科学基础,仿生织构的研究具有较高的学术价值,在工业生产中具有广阔的应用前景。

  • 目前仿生织构的研究逐渐广泛,织构类型也多种多样,从减阻耐磨效果来看,较优的还属凹坑型和沟槽型[10-11],如孙艺文等[12] 为增强活塞的使用性在摩擦副表面加工了凹坑型织构;Yu等[13]对沟槽型织构的各项参数进行了优化; Zheng等[14] 加工梯度性的六面体织构,经试验结果分析证实可提高耐磨性能。不仅如此,织构的加工方法也日渐成熟,韩鑫等[15] 用热压印法直接复刻鲨鱼皮表面形貌的减阻样件;黄志平[16] 用复刻法加工了鲨鱼体表的沟槽织构; 韩鑫等[17]采用电铸法加工沟槽织构;Bixler G D [18] 采用软刻的方法制备仿鲨鱼体表,测其减阻率以及表面光滑度等。加工出仿生织构便要进行试验以评判其摩擦性能,韩志武等[19-20]通过正交试验对比圆形凹坑、圆形凸包及矩形沟槽的耐磨性, 探究耐磨机理;Kun Wang等[21-22] 在PDMS工件表面加工了仿生六边形和正方形凸包,进行了粘附性测试;缪晨炜等[23] 仿照蚯蚓体表多尺度沟槽制备矩形沟槽进行摩擦磨损性能分析;李俊玲[24]将不同的圆形凹坑组合成葫芦形凹坑研究摩擦性能;GAO等[25-26] 通过摩擦磨损试验,分析非光滑几何单元在不同参数条件下对表面摩擦性能的影响,如形状、尺寸、面积占有率等;马晨波[27]研究了无织构、上试件单织构、下试件单织构和双织构表面在不同载荷和润滑条件下的摩擦磨损性能,判断出较好的制备方法和材料应用到工业生产当中。

  • 基于仿生织构的广泛研究,其在许多领域中都具有一定的应用价值。 “仿生泳衣”质地柔软、轻盈、高弹性,其仿照鲨鱼皮能降低人体与水之间的黏性摩擦力, 可获得3%~5%的减阻效果[28]。吉林大学的杨洪秀[29]在活塞表面仿照生物体表微结构加工了织构,织构化表面较非织构化表面而言,摩擦磨损性能提高了很多,表面的织构可以储存油液,在活塞运动过程中会产生大量摩擦热,此时储存的润滑油可以起到润滑和冷却散热的作用,减小磨损,同时也可以减震,延长活塞使用寿命。钱权[30] 仿照鲨鱼皮在隔水管表面加工了沟槽型织构,并且研究了其减阻性能, 随着沟槽数量增加,减阻率先减小再增加,当沟槽数量n=32 时,减阻率高达55.3%。南航的常琪将凸起织构应用到手机壳上,不仅可增加摩擦力还能够防水。作为代表性的农具之一犁铧因为常年在土壤中作业,摩擦磨损很严重,由于土壤情况的不同,犁铧的使用寿命也相对不同,为了延长其使用周期提高使用寿命,研究者发现可以在工作表面仿照蜣螂体表的凹坑织构,制备此种仿生织构可以大大提高使用效率和寿命,以下是仿生织构的应用实例,如图1 所示。

  • 20 世纪60 年代以来,越来越多的科研人员致力于仿生织构减阻耐磨研究[31],并且在亲/疏水性能及不同润滑机制条件下也有了不少的应用,除此之外,AOKIK等[32] 和ALAM等[33] 通过仿真试验分析不同凹坑类型的高尔夫球,发现其迎风端压力与背风端压力均大于光滑球的,不规则凹坑使得湍流分散,从而减小风中阻力。航天航海业发展迅猛,为了减小飞机飞行阻力,研究者们仿照鲨鱼皮表面不规则的沟槽织构应用到机身上,经飞行模拟试验,证实此应用不仅能减小飞行阻力还能节省燃料;在表面防护上,陈子飞等[34]仿甲鱼壳制备织构,表面的黏附性能会大大降低,有效避免了与污染物的直接接触;在医学上,对骨科和牙科的材料表面进行了织构仿生,能够促进润滑和延长使用寿命,具有良好的成效。

  • 图1 仿生织构应用实例

  • Fig.1 Application example of biomimetic texture

  • 1 仿生微/纳织构的类型

  • 经考察发现,许多生物体表具有微/纳米级的非光滑结构,根据其外观形貌来看大体可分为凹坑形、凸包形、刚毛形和沟槽形,其中凹坑形的代表生物有蜣螂、金龟子、象鼻虫、星吉丁虫;凸包形代表生物有蜣螂头部、荷叶;刚毛形代表生物有蝼蛄体表、壁虎脚掌;沟槽形代表生物有树蛙、鲨鱼、蚯蚓头部、猪笼草口缘等[35]。下面就以上四种基本类型进行归类论述。

  • 1.1 凹坑形织构

  • 星吉丁虫作为代表生物之一,为了适应生存,其体表进化成一种非光滑的凹坑织构( 如图2),这种微织构具有减阻耐磨功能。其机理在于当摩擦副间的工作压力较大时,对磨件表面紧密接触,润滑液会暂时被储存在微小凹坑内,随着摩擦副的相对运动接触力也会改变,此时凹坑内的润滑液会被带出实现二次润滑,减小磨损。

  • 图2 星吉丁虫表面凹坑微观形貌

  • Fig.2 Microcosmic morphologies of the pits on the surface of Star beetle

  • 1.2 沟槽形织构

  • 蚯蚓[36]头部是仿生织构研究中较为普遍的矩形沟槽织构(如图3( a)),蚯蚓常年在土壤中爬行,头部更是与泥土或沙石有较强的磨损冲击但不会被其所伤,主要因为头部特殊的沟槽织构可以起到减阻耐磨作用,而且蚯蚓自身可以分泌粘液实现润滑效果;鲨鱼作为代表性海洋生物之一,体表的盾鳞呈明显的沟槽状(如图3( b)),常年在海里遨游,巨大的体躯需克服水流的阻力和自身的重力,体表独有的盾鳞结构和特殊的排列方式具有良好的减阻耐磨作用,从而实现快速捕食;菲律宾特有的食肉植物猪笼草是近几年仿生的新发现[37],水不仅能够往低处流,还可以从低处往高处流,这体现在猪笼草的 “嘴唇”上,其口缘呈多级沟脊状(如图3( c)), 且在最小尺度的沟内还分布有单一朝向的具有楔形夹角的盲孔结构,它能形成负压锁住液体, 实现水连续的多级搬运,呈现低黏附性。沟槽型织构的机理一方面在于沟槽的联通性比较强,有利于润滑液的流动,促进有效润滑,另一方面微小沟槽可以促进收敛楔和发散楔的产生,润滑液体流经处会形成正负压力差,产生动压润滑效果,从而提高润滑油膜的稳定性和承压能力。

  • 1.3 凸包形织构

  • 荷叶作为凸包形织构的代表生物,其表面的不规则微米级凸包使其具有超疏水的性能(如图4(a)),故有“出淤泥而不染”的美誉[38];树蛙脚掌上的不规则六边形织构也可以增加粘附力(如图4( b)), 使其在湿滑的树叶上行走跳跃[39]。其机理在于荷叶表面的微小凸包类似排列紧密的小球,水滴滴在织构化的表面无法与基体材料接触就滑落,因此呈现超疏水性能,可实现自清洁作用。不规则的六边形凸起则与凸包具有相反的作用,相邻两单元之间虽存在微小缝隙,无法渗进水滴,但单个六边形织构单元的面积较大,若将其加工在摩擦副表面,会大幅增加摩擦副间的接触面积,加上粗糙的表面会大大增强附着力。

  • 图3 沟槽织构代表生物及微观形貌

  • Fig.3 Groove texture represents the biological and microscopic morphology

  • 图4 凸包织构代表生物及微观形貌

  • Fig.4 Convex hull texture represents the biological and microscopic morphology

  • 1.4 刚毛形织构

  • 壁虎脚掌的微刚毛织构大大增加了其在爬行过程中的接触面积(如图5(a)),从而增加附着力[40];蝼蛄体表的刚毛亦是如此(如图5(b)),密密麻麻的刚毛微结构不仅增大接触面积还增加了表面的粗糙度,同时也大幅提高了表面的黏附性和附着力。

  • 图5 刚毛织构代表生物及微观形貌

  • Fig.5 Rigid wool texture represents the biological and microscopic morphology

  • 2 仿生织构的设计和加工方法

  • 2.1 织构的设计

  • 随着仿生织构日渐成熟,研究者们设计多种织构形状并展开研究,由于刚毛形织构的形态较难加工,并且多半呈现较强的黏附性,对于提高摩擦性能作用甚小,因此只考虑凹坑形、沟槽形、凸包形等织构,其中凹坑形织构包括:圆形凹坑、方形凹坑、三角形凹坑等;沟槽形织构包括:矩形沟槽、圆柱形沟槽、V形沟槽等;凸包形织构包括:六边形凸包、圆形凸包等,形态多种多样,不再一一列举。本部分就四种减阻耐磨效果最好的织构类型展开结构设计,分别为圆形凹坑、三角形凹坑、六边形凸起[41]、矩形沟槽(图6)。

  • 图6 织构的设计

  • Fig.6 Texture design

  • 织构的几何参数主要有大小、深度、间距、面积占有率等。从大量文献总结可知,凹坑织构得直径通常取10~15 μm,深度取3~5 μm,间距一般在20 μm左右,间距过大或过小都不易发挥织构化优势;六边形凸起直径取50~100 μm,单个六边形织构较凹坑稍大,深度一般取5 μm左右, 间距在120~150 μm; 沟槽织构宽度取50~80 μm,间距在100~140 μm,深度也是3~5 μm。面积占有率根据织构形状大小排布而异,整理得到面积占有率通用公式[42],其中n为织构个数。

  • γ=nSSinglearea SWeararea ×100%
    (1)
  • 2.2 加工方法

  • 表面织构的加工方法有多种,比如激光加工技术[43]、微细切削技术[44]、微磨粒射流加工技术[45]、电子束光刻-复膜技术[46]、电火花加工技术[47]等,每种加工方法都有其各自的特点,例如激光加工技术虽加工精度较高、环保性较好,且具有无“刀具”磨损等优点,但设备较贵,主要以加工微凹坑、微沟槽织构为主;电火花加工适用于普通加工方法难加工或无法加工的特殊材料和复杂形状的工件,不受材料硬度影响,不受热处理状况影响;电子束光刻是用电子束扫描,主要有两种扫描方式:光栅扫描和矢量扫描[48],加工效率较低;微细切削加工要在保证材料强度和刚度的前提下加工出微小尺寸的工件,因此加工过程中切削量要很小;微磨料射流加工通过以水或空气为介质形成的高压射流来完成硬脆材料、复合材料的微切削,根据自己制备试样所需的精度选择适当的加工方法,文中利用飞秒激光技术在试件表面加工织构。

  • 3 仿生织构表面摩擦特性分析

  • 3.1 试验设备及方案

  • 试验在MMG-10 摩擦磨损试验机上进行,采用淬火45 钢作为上磨件,织构化的YT15 硬质合金为下磨件,参照试验机尺寸将试样内径设为10 mm、外径设为14.6 mm, 具体试验方案如表1 所示。此部分主要介绍圆形凹坑、三角形凹坑、六边形凸起和矩形沟槽四种织构类型在不同载荷、转速和占有率条件下摩擦因数的差别,通过点线图将数据进行归纳整理,并对试验结果进行分析讨论,以此来寻求减阻耐磨效果最优的仿生织构类型。

  • 表1 摩擦试验方案及试验条件

  • Table1 Friction experimental scheme and experimental condition

  • 3.2 摩擦因数

  • 3.2.1 圆形凹坑织构

  • 图7 为60、80、120、140 r/min转速下3 种面积占有率(5%、10%、13%)随载荷的变化的摩擦因数点线图。就总体而言,无论在多大转速下, 各占有率的摩擦因数都未超过0.3,点线图的走势并未呈现明显的正比或反比关系,但4 种转速下都是占有率为13%的摩擦因数最大,5%的次之,10%的最小,当载荷取50 N/300 N时并未得到较优的减阻耐磨效果,而载荷为100 N时摩擦因数最小且达到最优摩擦性能,说明此时摩擦副间的接触力最为合适。就图7( a) 和图7( b) 而言,占有率为5%和13%的摩擦因数随载荷的增加而降低,但图7(c)和图7(d)中这两种占有率的摩擦因数出现了无规则波动, 说明转速120 r/min是一个转折点,在此转速下,各占有率的摩擦因数达到较为稳定的状态,此时的摩擦磨损性能较为优异。

  • 图7 圆形凹坑织构在各转速下不同面积占有率对应的摩擦因数

  • Fig.7 Coefficient of friction corresponding to different area occupancy rates of circular pit texture at different rotational speeds

  • 3.2.2 三角凹坑织构

  • 图8 为60、80、120、140 r/min转速下3 种面积占有率(5%、10%、13%)随载荷的变化的摩擦因数点线图。就总体而言,最大摩擦因数未超过0.26,除13%的占有率外,其他两种占有率的摩擦因数都随着载荷的增加而减小,成反比关系。各转速下占有率为10%的摩擦因数最小,并且都在载荷为300 N时达到最小值,且从点线图的整体走势来看,各转速下摩擦因数值的波动情况大同小异,说明当选取三角凹坑织构时,转速对最终的摩擦性能影响不大,并非主要因素。图8(a)中, 3 种占有率的变化趋势相同,都是随着载荷增加摩擦因数逐渐减小,此时载荷作为非显著影响因素并未引起波动,在图8(b)中,载荷取50 N时, 占有率为10%和13%的摩擦因数有小幅的降低, 其他载荷下并未出现明显变化,说明载荷过小时,摩擦副间的工作状态会稍失稳定性,图8(c) 和图8(d)中,占有率10%的摩擦因数取得最小值,都在0.06~0.07,差别不大。综上可知,当占有率为10%时,在300 N时的摩擦状态较为稳定,摩擦性能较好。

  • 3.2.3 六边形凸起织构

  • 图9 是80 r/min和120 r/min两转速下不同载荷随占有率变化的摩擦因数点线图。与凹坑织构不同的是六边形凸起织构的占有率需足够大才能起到减阻耐磨的作用。总体来看,整体的摩擦因数随着载荷的增加而减小,而摩擦因数与占有率间并无呈现显著的递增或递减趋势,只是呈无规则的波动。摩擦因数处于0.5~1 之间,较其他织构相比较大,摩擦因数越大说明磨损越严重,此织构所起到的减阻耐磨作用就越小,其中载荷为100 N的摩擦因数相对较高,说明当载荷较小时,摩擦作业过程中两摩擦副间可能会出现微跳动现象,不能严密接触,产生的磨屑不能及时有效的排除造成磨损。

  • 图8 三角凹坑织构在各转速下不同面积占有率对应的摩擦因数

  • Fig.8 Coefficient of friction corresponding to different area occupancy rates of triangular pit texture at different rotational speeds

  • 图9 六边形凸起织构在各占有率下载荷对应的摩擦因数

  • Fig.9 Coefficient of friction corresponding to different area occupancy rates of hexagonal convex texture at different rotational speeds

  • 图9( a)( b) 的数据波动趋势基本相同,说明对于六边形凸起织构而言转速是非显著性因素,在占有率为40%时的摩擦因数达到最小值, 随着占有率的增加摩擦因数不同幅度的增加。综上,六边形凸起织构的减阻效果一般,虽整体具有一定的稳定性,但摩擦因数普遍偏高,摩擦性能达不到较优程度。

  • 3.2.4 矩形沟槽织构

  • 图10 为60、80、120、140 r/min转速下4 种面积占有率(5%、10%、13%和15%)随载荷的变化的摩擦因数点线图。就整体而言,矩形沟槽织构所测得的摩擦因数相对其他织构偏低,各占有率的摩擦因数随着载荷的增加而降低,而且在载荷为300 N时占有率10%的摩擦因数取最小值,最小值可达到0.05 以下,可见矩形沟槽织构的减阻耐磨效果非常理想。从图中可以看出,占有率15%的摩擦因数最大,虽然高占有率可以加工多个织构数量,但并非织构数量越多流体动压效果越好,毕竟单个织构单元产生的正压力有限,摩擦副间润滑膜的流体承载力也有限,从伯努利效应[49] 考虑,流速越高内部压力越小,润滑油膜的承载能力也会降低。转速对占有率为5%的摩擦因数有些影响,对其他占有率影响很小,当转速为120 r/min和140 r/min时,最小值都在0.02 附近,其中转速140 r/min时,摩擦因数最值差仅在0.1 之内,所以此状态下摩擦性能最为稳定。

  • 当进行织构化表面的摩擦试验时要选取合适的参数,其中载荷、转速、占有率都是至关重要的参数,但各参数对摩擦性能的影响程度也因织构类型而异。归纳以上各织构的摩擦特性分析总结得到普适性规律:施加载荷不宜过大或过小,若载荷过大会加剧摩擦过程中的磨损,甚至会产生残余应力损坏基体,反之若载荷过小会导致摩擦副不能完全实际接触,甚至会出现微跳动现象,较难进行摩擦作业,或者在摩擦过程中出现打滑现象,这都会造成工件失效,因此载荷一般取100~300 N。同样若占有率过低,织构数量较少无法起到储存磨屑的作用,其减阻耐磨的效果也不理想;占有率也不能过大,否则会使得摩擦副间的实际接触面积过小,无法正常进行摩擦作业,失去织构表面得意义,只有选择适当的织构占有率才能降低表面摩擦因数,因此取10%左右较为合适;从各图中可以看出,转速对其他因素下的摩擦因数影响并不大,图像的整体走势基本大同小异,且无任何规律性,因此转速可作为评判摩擦性能的参考因素,根据试验条件确定即可。

  • 图10 矩形沟槽织构在各转速下不同面积占有率对应的摩擦因数

  • Fig.10 Coefficient of friction corresponding to different area occupancy rates of rectangular groove texture at different rotational speeds

  • 3.3 圆形凹坑和矩形沟槽织构单元的压强分布

  • 为探究这两种织构对压力分布的影响,需对其进行仿真分析,仿真过程中设置操作参考压力为300 MPa,定义流体密度为850 kg/m 3,黏度为0.045 Pa·s, 初始化完成后进行迭代求解。图11(a)是无织构工作表面的纵截面压力云图, 由图可以看出,在液体流动方向上,单位面积内的压力并无多大变化。图11( b) 是圆形凹坑织构压力云图,由图可知,沿着流速方向,在凹坑右端出口处存在最大正压力,甚至四周也都有较内部稍大的正压力,并且凹坑的内部存在明显的回流现象,在凹坑中间部分压强较低,形成了负压, 但整体还未见明显的压力梯度,说明所形成的流体动压效果不强烈。图11( c) 是截取的一部分沟槽织构的压力云图,整体看来,沿着流体方向的织构右端是高压区,并伴有明显的压力梯度, 此处除形成了较强烈的流体动压效果以外,还具有流体对流现象,形成正压力集中区,同样在织构内部也形成了负压回流区,但负压值与凹坑织构的负压相比略小些。

  • 图11 织构表面压力云图

  • Fig.11 Texture surface pressure cloud image

  • 通过仿真和试验数据对比,沟槽型织构的减阻耐磨效果最好,况且沟槽织构较凹坑织构相比能够使得润滑油液具有更大的流动性,若对矩形沟槽织构给予一定的角度递进,对流体会形成楔形收敛效应,在出口处会产生更大的正压力,整体的供压能力也会增强,流体动压效果也就更好;凹坑织构次之,较无织构工作表面的压力云图来看,其内部虽形成较大的负压,但其出口处的正压力比较小,因此对润滑油液的承载力也有限,整体的流体动压效果一般,因此对提高摩擦性能的效果也较为一般;凸包织构的减阻耐磨效果不是很好,其主要体现在良好的疏水性和低黏附性,在摩擦作业时可避免润滑液透过织构直接与基体接触造成腐蚀,促进有效润滑间接改善摩擦性能。许多研究者也得到其他结论,如尹必峰等[50]提出在低速工况下凹坑织构的减阻耐磨效果要优于沟槽织构;余广等[51] 作了对比分析,发现同等条件下圆柱形织构的润滑性能更好;Wang等[52] 作了分析证明各种形貌织构对摩擦磨损润滑都有一定的积极作用; DEAN等[53]证实鲨鱼体表织构可以减少10%的摩擦阻力;杨弘炜等[54] 设计的凹坑织构可达到22%的减阻率;LIM等[55] 测得凹环织构减阻率与凹坑类型相差不大。

  • 3.4 SEM形貌

  • 3.4.1 无织构表面微观形貌

  • 图12 为未织构化的表面微观形貌。图12( a)( b)是未抛光件的微观形貌,可以清晰地看见数条犁沟,并且在犁沟的附近出现众多细小的凹坑,这是由于基体材料本身就不平滑,表面存在一些细小的毛刺,若未经抛光,在摩擦副运动的过程当中,这些毛刺会充当“犁耙” 的作用,再加之载荷的冲击,会在表面留下一道道犁沟,也正是由于这些毛刺的作用使得摩擦副之间不能严密接触, 会形成微小的气蚀凹坑。图12(c)(d)是抛光件的微观形貌,表面也有密密麻麻大小不一的凹坑,由于在抛光过程中会产生磨粒,磨粒长时间不能有效的排出,此时由于高压形成的交变载荷,导致磨粒压入工作表面形成凹坑。

  • 图12 未织构化表面微观形貌

  • Fig.12 Microstructure of untextured surface

  • 3.4.2 凹坑织构表面微观形貌

  • 图13 为圆形凹坑织构表面磨损形貌。如图13 所示,当试件表面加工了凹坑织构后,较图12 的未织构表面相比,磨损情况大大减轻,并未出现明显的犁沟,因为表面的凹坑可以收集和储存磨屑,同样也可以储存润滑油以便实现摩擦过程中的润滑,与此同时可以减小摩擦副之间的实际接触面积,提高承载力,从而提高摩擦磨损性能。但表面还是存有密集的微小气穴,一方面是由于摩擦作业中产生的磨粒虽能在凹坑织构里存储,但无法实现完全排出,交变载荷致使点蚀的形成;另一方面是由于工作过程中产生的高温会使得润滑油粘稠,油液会带动之前剥落的磨粒在摩擦副表面造成黏着磨损,也会出现微小的坑洼,所以圆形凹坑的磨损机制主要为磨粒磨损和黏着磨损。

  • 图13 圆形凹坑织构表面磨损形貌

  • Fig.13 Surface wear morphologies of circular crater texture

  • 3.4.3 沟槽织构表面微观形貌

  • 图14 为矩形沟槽织构表面磨损形貌,如图所示,织构外的区域磨损较轻,没有犁沟和较多的微孔产生,但放大来看,在沟槽的出口处还是有稍许的气穴,这与凹坑织构周围的气穴形成原因大同小异,与矩形沟槽的压强分布效果一致, 出口处的高压使得磨粒在摩擦副之间形成冲击磨损,矩形沟槽的磨损机制也主要是磨粒磨损和黏着磨损。

  • 3.4.4 凸起织构表面微观形貌

  • 荷叶表面具有微米级的乳突和蜡状物,研究者仿照此种特殊纹理制成凸包型织构,此种织构具有较强的超疏水自清洁效应。所谓的超疏水表面[56-58] 通常指接触角大于150°,滚动角小于10°的表面。图15 是普通Q235 表面和超疏水Q235 表面的SEM形貌[59]。由图15( a) 可以看出,较为光滑平整,粗糙度较低;而图15(b)显示, 表面则形成鳞片状类似小球的微/纳结构,这种微小结构使得表面粗糙度较大,当接触水滴时,水滴底下会形成一层空气,水滴无法和基体材料直接接触,说明超疏水表面对水的黏附性较低。

  • 图14 矩形沟槽织构表面磨损形貌

  • Fig.14 Surface wear morphologies of rectangular groove texture

  • 3.4.5 沟脊状织构表面微观形貌

  • 除荷叶表面的凸包织构外,猪笼草表面的沟脊状微结构具有良好的抗黏附性,图16 是猪笼草表面SEM形貌,图16(a)为猪笼草口缘表面, 图16(b)为猪笼草口缘内部盲孔截面。这种特殊的纹理结构在摩擦作业中会避免带动磨屑在摩擦过程中产生磨粒磨损,同时也可以避免黏附空气中的灰尘而造成额外磨损,这种沟脊状织构能够有效降低流体与基体间的黏附作用,也可以大幅降低产生的机械噪音,对摩擦性能的提高有显著作用。

  • 图15 Q235 表面微观形貌

  • Fig.15 Surface morphology of Q235

  • 图16 猪笼草表面SEM形貌

  • Fig.16 SEM images of pitcher plant surface

  • 4 仿生织构减阻耐磨机理

  • 在干摩擦条件下,摩擦副之间进行长时间的摩擦作业,缺少了润滑油的润滑作用,工作表面会产生大量磨屑并发生磨粒磨损,若无特殊的织构处理和储存磨损,将会给工作表面带来犁沟状的划痕,严重时会导致失效。此时若表面设有仿生织构收集并储存磨屑,同时能够减小两摩擦副之间的直接接触面积,避免犁沟的产生,降低磨损;在边界润滑条件下,摩擦过程中难免会出现润滑液不足的现象,此时就是边界润滑的状态, 微织构不仅可以储存润滑液,还可以通过摩擦时两摩擦副之间产生的挤压力把油液从织构间挤出,实现“二次润滑”;在流体润滑条件下,摩擦副间的润滑液充足,形成一层润滑薄膜,两摩擦副并非直接接触而是通过这层润滑膜传递动力和能量,摩擦因数相对较低,磨损量也会较小。当润滑液流经微凹坑或微沟槽织构时,从液体流入口到流出口呈发散状态[60],并且有纵向高度差, 液体在流动过程中会形成负压,并且能够产生空泡,进出口两端的正负压使得液体在流经织构时会产生动压润滑效果。

  • 关于沟槽减阻有3 种观点:流体强度理论、黏性理论、空穴理论[61]。其中流体强度理论是在油润滑得条件下通过摩擦副间得工作在表面形成不等得流体压力呈现处流体动压效果;黏性理论是工作产生的高温使得润滑剂黏度增加,会将产生的磨粒带出摩擦副表面,以避免或减轻磨粒磨损;空穴理论是指液体内局部压强降低到饱和蒸气压之下时[62],液体内部出现气体空泡导致空穴的产生。矩形沟槽织构表面的减阻耐磨机理[63]在于条形的沟槽在摩擦过程中可储存润滑液,对磨件之间产生的摩擦力会导致沟槽织构里的润滑液线性收敛,便于及时润滑;当产生大量摩擦热时,润滑液除润滑作用还可以起到冷却作用,同时微小的沟槽可减小实际接触面积,避免磨屑量过多从而减小磨损,在此过程中剪切应力也会相应减小,以达到减少能量耗散和摩擦阻力的目的。

  • 凸起织构的工作机理在于当水滴与工作表面接触时,由于特殊的粗糙表面结构,在水滴与织构间会形成一层空气隔膜,导致水滴无法与基体材料直接接触便滑落,体现了超疏水性,此特性不仅可以起到自清洁的作用,还能够使得润滑液和冷却液起到隔膜的作用从而减小摩擦副间的磨损,再者还能够保护织构本身避免基体材料的快速腐蚀以保证使用寿命。沟脊状织构之所以可以实现水的逆向流动一方面是由于猪笼草表面垂直排列着蜡质晶体,这些蜡质晶体使得猪笼草表面与外界接触方式为点接触,缩小了接触面积同时大大降低了黏附力,从能量方面而言, 猪笼草的口缘具有单向盲孔结构,虽可利用负压实现单向锁水,但接触面积过小产生的作用势能也会越小,所以抗黏附性越强。

  • 5 结论

  • 目前仿生织构在摩擦学中的应用已取得较大的进展,可得到以下主要结论。

  • (1)文中论述的几种基本的仿生织构中,减阻耐磨效果较优的是沟槽形,凹坑形次之,这两种也是应用较广泛的类型。

  • (2)通过对三角凹坑、圆形凹坑、六边形凸起、矩形沟槽进行参数设计,得到面积占有率通用公式:γ=nSSingle area SWear area ×100%

  • (3)仿生织构摩擦磨损试验表明,无论取何种织构类型,10%的占有率都是较优选择,其中对于凹坑织构而言,载荷要取稍小些,一般在100 N左右,转速取稍大些,一般在120 r/min左右;对沟槽织构而言,载荷和转速都要取稍大些, 载荷在300 N左右,转速在150 r/min左右;对凸包织构而言,载荷取稍大些,一般在300 N左右, 转速可根据实际情况选取。

  • (4)不同织构类型有各自的工作机理,结合性能较好的基体材料,可有效促进减阻耐磨以提高摩擦磨损性能。

  • 文中仅论述了几种常见的仿生织构类型,尚有不够全面之处,今后研究工作将继续广泛深入的研究,尝试将凹坑织构和沟槽织构结合起来, 或者将任意两种或3 种织构进行结合,制作复合型织构,既能够具备良好的摩擦性能又可以增强流体动压润滑效果,最大化发挥仿生织构的作用;进一步拓展凹坑和沟槽织构的结构设计,通过试验寻求最优的复合型织构形状;加强复合型织构的机理研究,结合有效的加工方法进行仿生织构的深度挖掘;将仿生织构的应用领域拓展到航天航海业,在深度研究的基础下也扩大范围探索,最大限度地增强减阻、耐磨、抗黏、疏水的效果。

  • 参考文献

    • [1] 张永辉.利用表面织构改善超高分子量聚乙烯润滑特性的研究[D].南京:南京航空航天大学,2009.ZHANG Y H.Improving the tribological performance of UH-MWPE with surface texture[D].Nanjing:Nanjing Universi-ty of Aeronautics and Astronautics,2009(in Chinese).

    • [2] BHUSHAN B.摩擦学导论[M].北京:机械工业出版社,2007.BHUSHAN B.Introduction to tribology[M].Beijing:Pow-ered by Site Engine,2007(in Chinese).

    • [3] 马付良,曾志翔,高义民,等.仿生表面减阻的研究现状与进展[J].中国表面工程,2016,29(1):7-15.MA F L,ZENG Z X,GAO Y M,et al.Research status and progress of bionic surface drag reduction[J].China Surface Engineering,2016,29(1):7-15(in Chinese).

    • [4] XU Q,WAN Y,HU T S,et al.Robust self-cleaning and micro manipulation capabilities of gecko spatulate and their bio-mimics[J].Nature Communication,2015(6):8949.

    • [5] 杨宗榕,郭智威,袁成清.仿生微胶囊复合水润滑轴承材料的摩擦性能研究[J].摩擦学学报,2018,38(1):28-36.YANG Z R,GUO Z W,YUAN C Q.Tribological properties of water-lubricated stern bearing composites modified with bi-omimetic microcapsules[J].Tribology,2018,38(1):28-36(in Chinese).

    • [6] LIU C,ZHU L,BU W,et al.Super hydrophobic surfaces:From nature to bio mimetic through VOF simulation[J].Mi-cron,2018,107:94-100.

    • [7] DOWSON D,NEVILLE A.Bio-tribology and bio-mimetics in the operating environment[J].Proceedings of the Institu-tion of Mechanical Engineers Part J-Journal of Engineering Tribology,2006,220(J3):109-123.

    • [8] GUO Z W,YUAN C Q,LIU A X,et al.Study on tribologi-cal properties of novel bio mimetic material for water-lubri-cated stern tube bearing[J].Wear,2017,376-377:911-919.

    • [9] 汪久根,陈仕洪,王庆九.仿生菱形表面织构对高速列车摩擦噪声的影响[J].交通运输工程学报,2014(1):43-48.WANG J G,CHEN S H,WANG Q J.Effect of bionic rhom-bic surface texture on frictional noise of high-speed train[J].Journal of Traffic & Transportation Engineering,2014(1):43-48(in Chinese).

    • [10] ALI F,KANETA M,KRUPKA I,et al.Experimental and numerical investigation on the behavior of transverse limited micro-grooves in EHL point contacts[J].Tribology Interna-tional,2015,84(S1):81-89.

    • [11] 刘东雷,孟小霞,袁春俭,等.多种规则微造型表面摩擦特性的试验研究[J].润滑与密封,2008,33(7):28-31.LIU D L,MENG X X,YUAN C J,et al.Research on tribo-logical performance of texturing surfaces[J].Lubrication En-gineering,2008,33(7):28-31(in Chinese).

    • [12] 孙艺文,汝绍锋,丛茜.仿生凹坑形钻井泥浆活塞磨损寿命试验[J].石油学报,2017,38(2):234-240.SUN Y W,RU S F,CONG Q.Wear-life experiment of drill-ing mud pump piston with dimple-shaped bionic surface[J].Acta Petrolei Sinica,2017,38(2):234-240(in Chi-nese).

    • [13] YU H Y,ZHANG H C,GUO Y C,et al.Thermodynamic a-nalysis of shark skin texture surfaces for micro channel flow [J].Continuum Mechanics and Thermodynamics,2016(28):1361-1371.

    • [14] ZHENG L,WU J J,ZHANG S,et al.Bionic coupling of hardness gradient to surface texture for improved anti-wear properties[J].Journal of Bionic Engineering,2016,13(3):406-415.

    • [15] 韩鑫,张德远,李翔,等.大面积鲨鱼皮复制制备仿生减阻表面研究[J].科学通报,2008,53(7):838-842.HAN X,ZHANG D Y,LI X,et al.Study on preparation of biomimetic drag reduction surface by large-area shark skin replication[J].Chinese Science Bulletin,2008,53(7):838-842(in Chinese).

    • [16] 黄志平.基于结构仿生的鲨鱼皮微沟槽复制技术基础研究[D].大连:大连理工大学,2012:1-78.HUANG Z P.Basic study on republication technology of mi-cro-riblets of shark skin based on structural bionics [ D].Dalian:Dalian University of Technology,2012:1-78(in Chinese).

    • [17] 韩鑫,张德远.鲨鱼皮微电铸复制工艺研究[J].农业机械学报,2011,42(2):229-234.HAN X,ZHANG D Y.Replication of shark skin based on micro-electroforming[J].Transactions of the Chinese Society of Agricultural Machinery,2011,42(2):229-234(in Chi-nese).

    • [18] BIXLER G D,BHUSHAN B.Bioinspired rice leaf and but-terfly wing surface structures combining shark skin and lotus effects[J].Soft Matter,2012,8(44):12139-12143.

    • [19] 任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报,2003,34(2):86-88,96.REN L Q,WANG Z Z,HAN Z B.Experimental research on sliding wear of bionic nonsmoothed surface[J].Transactions of the Chinese Society for Agricultural Machinery,2003,34(2):86-92(in Chinese).

    • [20] 韩志武,许小侠,任露泉.凹坑形非光滑表面微观摩擦磨损试验回归分析[J].摩擦学学报,2005,25(6):578-582.HAN Z B,XU X X,REN L Q.Regression analysis of micro-friction and wear on concave non-smooth surface[J].Tribol-ogy,2005,25(6):578-582(in Chinese).

    • [21] WANG K,HE B,LI M H,et al.Fabrication of biomimetic wet adhesive pads with surface microstructures by combining electroforming with soft lithography[J].Surface Engineering & Applied Electrochemistry,2012,48(2):99-104.

    • [22] WANG K,SHEN R J,HE B.Influence of surface roughnesson wet adhesion of biomimetic adhesive pads with planar mi-crostructures[J].Micro & Nano Letters,2012,7(12):1274-1277.

    • [23] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO C W,GUO Z W,YUAN C Q.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30(in Chi-nese).

    • [24] 李俊玲,陈平,邵天敏,等.葫芦形微凹坑对不锈钢表面摩擦学性能的影响[J].摩擦学学报,2016,36(2):207-214.LI J L,CHEN P,SHAO T M,et al.The effect of gourd-shaped surface texture on tribological performance of stainless steel[J].Tribology,2016,36(2):207-214(in Chi-nese).

    • [25] GAO X,CHEN Q,TENG H D.Primary resonance analysis of solid and liquid mixture vibration isolation system [J].Chinese Journal of Mechanical Engineering,2012,48(15):90-95.

    • [26] 李兵,刘焜,王静,等.线接触滑———滚条件下微凹坑表面摩擦特性[J].机械工程学报,2011,47(21):91-96.LI B,LIU K,WANG J,et al.Micro cavity’ s tribological property under line contact and sliding-rolling conditions[J].Journal of Mechanical Engineering,2011,47(21):91-96(in Chinese).

    • [27] 马晨波,朱华,历建全.摩擦副不同表面织构化的润滑减摩性能试验研究[J].中国矿业大学学报,2010,39(2):244-248.MA C B,ZHU H,LI J Q.Experimental study of tribological properties of texture on different surfaces of frictional pairs [J].Journal of China University of Mining & Technology,2010,39(2):244-248(in Chinese).

    • [28] GREGORY D BIXLER,BHUSHAN B.Fluid drag reduction with shark-skin riblet inspired micro structured surfaces[J].Advanced Functional Materials,2013,23(36):4507-4528.

    • [29] 杨洪秀.活塞缸套系统仿生非光滑界面摩擦与润滑机理的研究[D].长春:吉林大学,2008.YANG H X.Study on friction and lubrication mechanism of bionic non-smooth interface in piston liner system [ D].Changchun:Jilin University,2008(in Chinese).

    • [30] 钱权.典型沟槽表面隔水管减阻性能研究[D].成都:西南石油大学,2018.QIAN Q.Study on drag reduction performance of riser on typ-ical groove surface[D].Chengdu:Southwest Petrole-Uni-versity,2018(in Chinese).

    • [31] SONG X W,LIN P Z,LIU R,et al.Skin friction reduction characteristics of variable ovoid non-smooth surface [J].Journal of Zhejiang University(Science A),2017,18(1):59-66.

    • [32] AOKIK,MUTOK,OKANAGAH.Aerodynamic characteris-tics and flow pattern of a golf ball with rotation[J].Procedia Engineering,2010,2(2):2431-2436.

    • [33] ALAMF,STEINERT,CHOWDHURYH,et al.A study of golf ball aerodynamic drag[J].Procedia Engineering,2011,13:226-231.

    • [34] 陈子飞,许季海,赵文杰,等.仿甲鱼壳织构化有机硅改性丙烯酸酯涂层的制备及其防污行为[J].中国表面工程,2013,26(6):80-85.CHEN Z F,XU J H,ZHAO W J,et al.Preparation and an-tifouling performance of organic silicone coatings with turtle bionic texture [J].China Surface Engineering,2013,26(6):80-85(in Chinese).

    • [35] 刘先兰,屠家贵,金潇明.仿生非光滑表面技术在机械工程中的应用[J].新技术新工艺,2012,40(5):21-24.LIU X L,TU J G,JIN X M.Application of bionic and non-smooth surface technic on mechanical engineering[J].New Technology & New Process,2012,40(5):21-24(in Chi-nese).

    • [36] CHENG X J,RU S F,SUN Y W,et al.Wear performance of bionic strip-shaped mud pump pistons[J].Proceedings of the Institution of Mechanical Engineers Part C-journal of Me-chanical Engineering Science,2017,231(21):4076-4084.

    • [37] 王立新,吴树静,李山山.工程仿生领域猪笼草叶笼研究现状及发展趋势[J].河北科技大学学报,2018,39(3):221-231.WANG L X,WU S J,LI S S.Research progress and devel-opment prospect of Nepenthes pitcher in engineering bionics field[J].Journal of Hebei University of Science and Tech-nology,2018,39(3):221-231(in Chinese).

    • [38] BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contaminants in biological surfaces[J].Plan-ta,1997,202(1):1-8.

    • [39] SCHOOL I,BARNES W J,SMITH J M,et al.Ultrastruc-ture and physical properties of an adhesive surface,the toe pad epithelium of the tree frog,litoria caerulea white [J].Journal of Experimental Biology,2009,212(2):155-162.

    • [40] DAVIES J,HAQ S,HAWKE T,et al.A practical approach to the development of a synthetic gecko tape[J].Internation-al Journal of Adhesion and Adhesives,2009,29(4):380-390.

    • [41] 常琪.仿生表面织构的摩擦及粘附性能研究[D].南京:南京航空航天大学,2018.CHANG Q.Research on the friction and adhesion properties of bionic surface texture[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018(in Chinese).

    • [42] 鹿重阳.异形织构化刀具表面涂层制备及摩擦磨损特性研究[D].济南:济南大学,2019.LU C Y.Study on preparation and friction and wear charac-teristics of surface coating for special-shaped textured cutting tools[D].Jinan:University of Jinan,2019(in Chinese).

    • [43] COSTIL S,LAMRAOUI A,LANGLADE C,et al.Surface modifications induced by pulsed-laser texturing-influence of laser impact on the surface properties[J].Applied Surface Science,2014,288(1):542-549.

    • [44] CHOUDHURY D,ROY T,KRUPKA I,et al.Tribological investigation of ultra-high molecular w-eight polyethylene a-gainst advanced ceramic surfaces in total hip joint replace-ment[J].Proceedings of the Institution of Mechanical Engi-neers,Part J:Journal of Engineering Tribology,2014,229(4):410-419.

    • [45] WAKUDA M,YAMAUCHI Y,KANZAKI S,et al.Effect ofsurface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact [J].Wear,2003,254(3-4):356-363.

    • [46] 解宝成,崔贺新,张元,等.微细电火花微孔加工技术的发展现状[J].哈尔滨理工大学学报,2018,23(4):25-30.XIE B C,CUI H X,ZHANG Y,et al.Current research of micro electrical discharge machining of micro-hole[J].Jour-nal of Harbin University of Science and Technology,2018,23(4):25-30(in Chinese).

    • [47] 陈娟,陶亮.激光技术制备刀具表面织构的研究进展 [J].河南科技,2018(32):32-34.CHEN J,TAO L.Research progress of tool surface texture fabricated by laser processing[J].Journal of Henan Science and Technology,2018(32):32-34(in Chinese).

    • [48] OKAZAKI S.High resolution optical lithography or high throughput electron beam lithography:The technical struggle from the micro to thenano-fabrication evolution[J].Micro E-lectronic Engineering,2015,133:23-35.

    • [49] 李运玺.拉拔模具织构化工作表面摩擦特性研究[D].济南:济南大学,2017.LI Y X.Study on tribological properties of textured working surface on conical dies [ D].Jinan:University of Jinan,2017(in Chinese).

    • [50] 尹必峰,卢振涛,刘胜吉,等.缸套表面织构润滑性能理论及试验研究[J].机械工程学报,2012,48(21):91-96.YIN B F,LU Z T,LIU S J,et al.Theoretical and experi-mental study on lubrication performance of composite textures on cylinder liners[J].Journal of Mechanical Engineering,2012,48(21):91-96(in Chinese).

    • [51] 余广,曾良才,毛阳,等.液压缸活塞表面微织构动压润滑性能分析 [J].机械科学与技术,2017,36(12):1823-1829.YU G,ZENG L C,MAO Y,et al.Analysis on hydrodynam-ic lubrication performance of micro-texture on hydraulic cylin-der piston surface[J].Mechanical Science and Technology for Aerospace Engineering,2017,36(12):1823-1829(in Chinese).

    • [52] WANG J Q,WANG X L.State of the art in innovative design of surface texture [J].Journal of Mechanical Engineering,2015,23:84-95.

    • [53] DEAN B,BHUSHAN B.Shark-skin surfaces for fluid-drag reduction in turbulent flow:A review.Philosophical transac-tions of the royal society a.Mathematical,Physical and En-gineering Sciences,2010,368:4775-4806.

    • [54] 杨弘炜,高歌.一种新型边界层控制技术应用于湍流减阻的试验研究[J].航空学报,1997,18(4):455-457.YANG H W,GAO G.Experimental study for turbulent drag reduction using a noval boundary control technique[J].Acta Aeronautics and Astronautics Sinica,1997,18(4):455-457(in Chinese).

    • [55] LIM H C,LEE S J.Flow control of a circular cylinder with 0-rings[J].Fluid Dynamics Research,2004,35:107-122.

    • [56] ZHANG X,SHI F,NIU J,et al.Superhydrophobic sur-faces:From structural control to functional application[J].Journal of Materials Chemistry.2008,18(6):621-633.

    • [57] TAMESUE S,TAKAHASHI E,KOSUGI S,et al.Fabrica-tion of a poly(dimethylsiloxane)micro structured surface im-printed from patterned silicon wafer with a self-cleaning prop-erty[J].Polymer Journal.2016,48(7):835-838.

    • [58] XUE C H,MA J Z.Long-lived superhydrophobic surfaces [J].Journal of Materials Chemistry A,2013,1(13):4146-4161.

    • [59] 杨统林.仿生超疏水表面的制备及其性能研究[D].南昌:南昌大学,2018.YANG T L.Studies on fabrication and properties of biomime-tic superhydrophobic surfaces[D].Nanchang:Nanchang U-niversity,2018(in Chinese).

    • [60] 于海武.基于流体动压润滑效应的表面织构优化设计 [D].南京:南京航空航天大学,2011.YU H W.Optimal design of surface texture based on hydro-dynamic lubrication [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011(in Chinese).

    • [61] 张成春,任露泉,王晶.旋成体仿生凹环表面减阻试验分析及数值模拟[J].吉林大学学报(工),2007,37(1):100-105.ZHANG C C,REN L Q,WANG J.Experiment and numeri-cal simulation on drag reduction for bodies of revolution using bionic scrobiculate ringed surface[J].Journal of Jilin Uni-versity(Engineering),2007,37(1):100-105(in Chi-nese).

    • [62] 陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN D R.Cavitation and cavitation erosion [J].China Basic Science,2010,12(6):3-7(in Chinese).

    • [63] WALSHMJ.Turbulent boundary layer drag reduction using [C]∥20th aerospace sciences meeting.Orlando:Aerospace Sciences Meeting,1982:82-169.

  • 参考文献

    • [1] 张永辉.利用表面织构改善超高分子量聚乙烯润滑特性的研究[D].南京:南京航空航天大学,2009.ZHANG Y H.Improving the tribological performance of UH-MWPE with surface texture[D].Nanjing:Nanjing Universi-ty of Aeronautics and Astronautics,2009(in Chinese).

    • [2] BHUSHAN B.摩擦学导论[M].北京:机械工业出版社,2007.BHUSHAN B.Introduction to tribology[M].Beijing:Pow-ered by Site Engine,2007(in Chinese).

    • [3] 马付良,曾志翔,高义民,等.仿生表面减阻的研究现状与进展[J].中国表面工程,2016,29(1):7-15.MA F L,ZENG Z X,GAO Y M,et al.Research status and progress of bionic surface drag reduction[J].China Surface Engineering,2016,29(1):7-15(in Chinese).

    • [4] XU Q,WAN Y,HU T S,et al.Robust self-cleaning and micro manipulation capabilities of gecko spatulate and their bio-mimics[J].Nature Communication,2015(6):8949.

    • [5] 杨宗榕,郭智威,袁成清.仿生微胶囊复合水润滑轴承材料的摩擦性能研究[J].摩擦学学报,2018,38(1):28-36.YANG Z R,GUO Z W,YUAN C Q.Tribological properties of water-lubricated stern bearing composites modified with bi-omimetic microcapsules[J].Tribology,2018,38(1):28-36(in Chinese).

    • [6] LIU C,ZHU L,BU W,et al.Super hydrophobic surfaces:From nature to bio mimetic through VOF simulation[J].Mi-cron,2018,107:94-100.

    • [7] DOWSON D,NEVILLE A.Bio-tribology and bio-mimetics in the operating environment[J].Proceedings of the Institu-tion of Mechanical Engineers Part J-Journal of Engineering Tribology,2006,220(J3):109-123.

    • [8] GUO Z W,YUAN C Q,LIU A X,et al.Study on tribologi-cal properties of novel bio mimetic material for water-lubri-cated stern tube bearing[J].Wear,2017,376-377:911-919.

    • [9] 汪久根,陈仕洪,王庆九.仿生菱形表面织构对高速列车摩擦噪声的影响[J].交通运输工程学报,2014(1):43-48.WANG J G,CHEN S H,WANG Q J.Effect of bionic rhom-bic surface texture on frictional noise of high-speed train[J].Journal of Traffic & Transportation Engineering,2014(1):43-48(in Chinese).

    • [10] ALI F,KANETA M,KRUPKA I,et al.Experimental and numerical investigation on the behavior of transverse limited micro-grooves in EHL point contacts[J].Tribology Interna-tional,2015,84(S1):81-89.

    • [11] 刘东雷,孟小霞,袁春俭,等.多种规则微造型表面摩擦特性的试验研究[J].润滑与密封,2008,33(7):28-31.LIU D L,MENG X X,YUAN C J,et al.Research on tribo-logical performance of texturing surfaces[J].Lubrication En-gineering,2008,33(7):28-31(in Chinese).

    • [12] 孙艺文,汝绍锋,丛茜.仿生凹坑形钻井泥浆活塞磨损寿命试验[J].石油学报,2017,38(2):234-240.SUN Y W,RU S F,CONG Q.Wear-life experiment of drill-ing mud pump piston with dimple-shaped bionic surface[J].Acta Petrolei Sinica,2017,38(2):234-240(in Chi-nese).

    • [13] YU H Y,ZHANG H C,GUO Y C,et al.Thermodynamic a-nalysis of shark skin texture surfaces for micro channel flow [J].Continuum Mechanics and Thermodynamics,2016(28):1361-1371.

    • [14] ZHENG L,WU J J,ZHANG S,et al.Bionic coupling of hardness gradient to surface texture for improved anti-wear properties[J].Journal of Bionic Engineering,2016,13(3):406-415.

    • [15] 韩鑫,张德远,李翔,等.大面积鲨鱼皮复制制备仿生减阻表面研究[J].科学通报,2008,53(7):838-842.HAN X,ZHANG D Y,LI X,et al.Study on preparation of biomimetic drag reduction surface by large-area shark skin replication[J].Chinese Science Bulletin,2008,53(7):838-842(in Chinese).

    • [16] 黄志平.基于结构仿生的鲨鱼皮微沟槽复制技术基础研究[D].大连:大连理工大学,2012:1-78.HUANG Z P.Basic study on republication technology of mi-cro-riblets of shark skin based on structural bionics [ D].Dalian:Dalian University of Technology,2012:1-78(in Chinese).

    • [17] 韩鑫,张德远.鲨鱼皮微电铸复制工艺研究[J].农业机械学报,2011,42(2):229-234.HAN X,ZHANG D Y.Replication of shark skin based on micro-electroforming[J].Transactions of the Chinese Society of Agricultural Machinery,2011,42(2):229-234(in Chi-nese).

    • [18] BIXLER G D,BHUSHAN B.Bioinspired rice leaf and but-terfly wing surface structures combining shark skin and lotus effects[J].Soft Matter,2012,8(44):12139-12143.

    • [19] 任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报,2003,34(2):86-88,96.REN L Q,WANG Z Z,HAN Z B.Experimental research on sliding wear of bionic nonsmoothed surface[J].Transactions of the Chinese Society for Agricultural Machinery,2003,34(2):86-92(in Chinese).

    • [20] 韩志武,许小侠,任露泉.凹坑形非光滑表面微观摩擦磨损试验回归分析[J].摩擦学学报,2005,25(6):578-582.HAN Z B,XU X X,REN L Q.Regression analysis of micro-friction and wear on concave non-smooth surface[J].Tribol-ogy,2005,25(6):578-582(in Chinese).

    • [21] WANG K,HE B,LI M H,et al.Fabrication of biomimetic wet adhesive pads with surface microstructures by combining electroforming with soft lithography[J].Surface Engineering & Applied Electrochemistry,2012,48(2):99-104.

    • [22] WANG K,SHEN R J,HE B.Influence of surface roughnesson wet adhesion of biomimetic adhesive pads with planar mi-crostructures[J].Micro & Nano Letters,2012,7(12):1274-1277.

    • [23] 缪晨炜,郭智威,袁成清.仿生多尺度沟槽织构对表面摩擦性能的影响[J].中国表面工程,2019,32(1):22-30.MIAO C W,GUO Z W,YUAN C Q.Effects of bionic multi-scales groove textures on surface tribological properties[J].China Surface Engineering,2019,32(1):22-30(in Chi-nese).

    • [24] 李俊玲,陈平,邵天敏,等.葫芦形微凹坑对不锈钢表面摩擦学性能的影响[J].摩擦学学报,2016,36(2):207-214.LI J L,CHEN P,SHAO T M,et al.The effect of gourd-shaped surface texture on tribological performance of stainless steel[J].Tribology,2016,36(2):207-214(in Chi-nese).

    • [25] GAO X,CHEN Q,TENG H D.Primary resonance analysis of solid and liquid mixture vibration isolation system [J].Chinese Journal of Mechanical Engineering,2012,48(15):90-95.

    • [26] 李兵,刘焜,王静,等.线接触滑———滚条件下微凹坑表面摩擦特性[J].机械工程学报,2011,47(21):91-96.LI B,LIU K,WANG J,et al.Micro cavity’ s tribological property under line contact and sliding-rolling conditions[J].Journal of Mechanical Engineering,2011,47(21):91-96(in Chinese).

    • [27] 马晨波,朱华,历建全.摩擦副不同表面织构化的润滑减摩性能试验研究[J].中国矿业大学学报,2010,39(2):244-248.MA C B,ZHU H,LI J Q.Experimental study of tribological properties of texture on different surfaces of frictional pairs [J].Journal of China University of Mining & Technology,2010,39(2):244-248(in Chinese).

    • [28] GREGORY D BIXLER,BHUSHAN B.Fluid drag reduction with shark-skin riblet inspired micro structured surfaces[J].Advanced Functional Materials,2013,23(36):4507-4528.

    • [29] 杨洪秀.活塞缸套系统仿生非光滑界面摩擦与润滑机理的研究[D].长春:吉林大学,2008.YANG H X.Study on friction and lubrication mechanism of bionic non-smooth interface in piston liner system [ D].Changchun:Jilin University,2008(in Chinese).

    • [30] 钱权.典型沟槽表面隔水管减阻性能研究[D].成都:西南石油大学,2018.QIAN Q.Study on drag reduction performance of riser on typ-ical groove surface[D].Chengdu:Southwest Petrole-Uni-versity,2018(in Chinese).

    • [31] SONG X W,LIN P Z,LIU R,et al.Skin friction reduction characteristics of variable ovoid non-smooth surface [J].Journal of Zhejiang University(Science A),2017,18(1):59-66.

    • [32] AOKIK,MUTOK,OKANAGAH.Aerodynamic characteris-tics and flow pattern of a golf ball with rotation[J].Procedia Engineering,2010,2(2):2431-2436.

    • [33] ALAMF,STEINERT,CHOWDHURYH,et al.A study of golf ball aerodynamic drag[J].Procedia Engineering,2011,13:226-231.

    • [34] 陈子飞,许季海,赵文杰,等.仿甲鱼壳织构化有机硅改性丙烯酸酯涂层的制备及其防污行为[J].中国表面工程,2013,26(6):80-85.CHEN Z F,XU J H,ZHAO W J,et al.Preparation and an-tifouling performance of organic silicone coatings with turtle bionic texture [J].China Surface Engineering,2013,26(6):80-85(in Chinese).

    • [35] 刘先兰,屠家贵,金潇明.仿生非光滑表面技术在机械工程中的应用[J].新技术新工艺,2012,40(5):21-24.LIU X L,TU J G,JIN X M.Application of bionic and non-smooth surface technic on mechanical engineering[J].New Technology & New Process,2012,40(5):21-24(in Chi-nese).

    • [36] CHENG X J,RU S F,SUN Y W,et al.Wear performance of bionic strip-shaped mud pump pistons[J].Proceedings of the Institution of Mechanical Engineers Part C-journal of Me-chanical Engineering Science,2017,231(21):4076-4084.

    • [37] 王立新,吴树静,李山山.工程仿生领域猪笼草叶笼研究现状及发展趋势[J].河北科技大学学报,2018,39(3):221-231.WANG L X,WU S J,LI S S.Research progress and devel-opment prospect of Nepenthes pitcher in engineering bionics field[J].Journal of Hebei University of Science and Tech-nology,2018,39(3):221-231(in Chinese).

    • [38] BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contaminants in biological surfaces[J].Plan-ta,1997,202(1):1-8.

    • [39] SCHOOL I,BARNES W J,SMITH J M,et al.Ultrastruc-ture and physical properties of an adhesive surface,the toe pad epithelium of the tree frog,litoria caerulea white [J].Journal of Experimental Biology,2009,212(2):155-162.

    • [40] DAVIES J,HAQ S,HAWKE T,et al.A practical approach to the development of a synthetic gecko tape[J].Internation-al Journal of Adhesion and Adhesives,2009,29(4):380-390.

    • [41] 常琪.仿生表面织构的摩擦及粘附性能研究[D].南京:南京航空航天大学,2018.CHANG Q.Research on the friction and adhesion properties of bionic surface texture[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2018(in Chinese).

    • [42] 鹿重阳.异形织构化刀具表面涂层制备及摩擦磨损特性研究[D].济南:济南大学,2019.LU C Y.Study on preparation and friction and wear charac-teristics of surface coating for special-shaped textured cutting tools[D].Jinan:University of Jinan,2019(in Chinese).

    • [43] COSTIL S,LAMRAOUI A,LANGLADE C,et al.Surface modifications induced by pulsed-laser texturing-influence of laser impact on the surface properties[J].Applied Surface Science,2014,288(1):542-549.

    • [44] CHOUDHURY D,ROY T,KRUPKA I,et al.Tribological investigation of ultra-high molecular w-eight polyethylene a-gainst advanced ceramic surfaces in total hip joint replace-ment[J].Proceedings of the Institution of Mechanical Engi-neers,Part J:Journal of Engineering Tribology,2014,229(4):410-419.

    • [45] WAKUDA M,YAMAUCHI Y,KANZAKI S,et al.Effect ofsurface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact [J].Wear,2003,254(3-4):356-363.

    • [46] 解宝成,崔贺新,张元,等.微细电火花微孔加工技术的发展现状[J].哈尔滨理工大学学报,2018,23(4):25-30.XIE B C,CUI H X,ZHANG Y,et al.Current research of micro electrical discharge machining of micro-hole[J].Jour-nal of Harbin University of Science and Technology,2018,23(4):25-30(in Chinese).

    • [47] 陈娟,陶亮.激光技术制备刀具表面织构的研究进展 [J].河南科技,2018(32):32-34.CHEN J,TAO L.Research progress of tool surface texture fabricated by laser processing[J].Journal of Henan Science and Technology,2018(32):32-34(in Chinese).

    • [48] OKAZAKI S.High resolution optical lithography or high throughput electron beam lithography:The technical struggle from the micro to thenano-fabrication evolution[J].Micro E-lectronic Engineering,2015,133:23-35.

    • [49] 李运玺.拉拔模具织构化工作表面摩擦特性研究[D].济南:济南大学,2017.LI Y X.Study on tribological properties of textured working surface on conical dies [ D].Jinan:University of Jinan,2017(in Chinese).

    • [50] 尹必峰,卢振涛,刘胜吉,等.缸套表面织构润滑性能理论及试验研究[J].机械工程学报,2012,48(21):91-96.YIN B F,LU Z T,LIU S J,et al.Theoretical and experi-mental study on lubrication performance of composite textures on cylinder liners[J].Journal of Mechanical Engineering,2012,48(21):91-96(in Chinese).

    • [51] 余广,曾良才,毛阳,等.液压缸活塞表面微织构动压润滑性能分析 [J].机械科学与技术,2017,36(12):1823-1829.YU G,ZENG L C,MAO Y,et al.Analysis on hydrodynam-ic lubrication performance of micro-texture on hydraulic cylin-der piston surface[J].Mechanical Science and Technology for Aerospace Engineering,2017,36(12):1823-1829(in Chinese).

    • [52] WANG J Q,WANG X L.State of the art in innovative design of surface texture [J].Journal of Mechanical Engineering,2015,23:84-95.

    • [53] DEAN B,BHUSHAN B.Shark-skin surfaces for fluid-drag reduction in turbulent flow:A review.Philosophical transac-tions of the royal society a.Mathematical,Physical and En-gineering Sciences,2010,368:4775-4806.

    • [54] 杨弘炜,高歌.一种新型边界层控制技术应用于湍流减阻的试验研究[J].航空学报,1997,18(4):455-457.YANG H W,GAO G.Experimental study for turbulent drag reduction using a noval boundary control technique[J].Acta Aeronautics and Astronautics Sinica,1997,18(4):455-457(in Chinese).

    • [55] LIM H C,LEE S J.Flow control of a circular cylinder with 0-rings[J].Fluid Dynamics Research,2004,35:107-122.

    • [56] ZHANG X,SHI F,NIU J,et al.Superhydrophobic sur-faces:From structural control to functional application[J].Journal of Materials Chemistry.2008,18(6):621-633.

    • [57] TAMESUE S,TAKAHASHI E,KOSUGI S,et al.Fabrica-tion of a poly(dimethylsiloxane)micro structured surface im-printed from patterned silicon wafer with a self-cleaning prop-erty[J].Polymer Journal.2016,48(7):835-838.

    • [58] XUE C H,MA J Z.Long-lived superhydrophobic surfaces [J].Journal of Materials Chemistry A,2013,1(13):4146-4161.

    • [59] 杨统林.仿生超疏水表面的制备及其性能研究[D].南昌:南昌大学,2018.YANG T L.Studies on fabrication and properties of biomime-tic superhydrophobic surfaces[D].Nanchang:Nanchang U-niversity,2018(in Chinese).

    • [60] 于海武.基于流体动压润滑效应的表面织构优化设计 [D].南京:南京航空航天大学,2011.YU H W.Optimal design of surface texture based on hydro-dynamic lubrication [ D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011(in Chinese).

    • [61] 张成春,任露泉,王晶.旋成体仿生凹环表面减阻试验分析及数值模拟[J].吉林大学学报(工),2007,37(1):100-105.ZHANG C C,REN L Q,WANG J.Experiment and numeri-cal simulation on drag reduction for bodies of revolution using bionic scrobiculate ringed surface[J].Journal of Jilin Uni-versity(Engineering),2007,37(1):100-105(in Chi-nese).

    • [62] 陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN D R.Cavitation and cavitation erosion [J].China Basic Science,2010,12(6):3-7(in Chinese).

    • [63] WALSHMJ.Turbulent boundary layer drag reduction using [C]∥20th aerospace sciences meeting.Orlando:Aerospace Sciences Meeting,1982:82-169.

  • 手机扫一扫看