- 表面工程研究 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

杨冠军(1977—),男(汉),教授,博士;研究方向:表面工程;E-mail:ygj@xjtu.edu.cn

中图分类号:TG174.4

文献标识码:A

文章编号:1007-9289(2020)02-0119-08

DOI:10.11933/j.issn.1007-9289.20191014001

参考文献 1
CAO X Q,VASSEN R,FISCHER W,et al.Lanthanum-ce-rium oxide as a thermal barrier-coating material for high-tem-perature applications [J].Advanced Materials,2003,15(17):1438-1442.
参考文献 2
ZHENG L,GUO H B,GUO L,et al.New generation ther-mal barrier coatings for ultrahigh temperature applications[J].Journal of Aeronautical Materials,2012,32(32):14-24.
参考文献 3
韩玉君,叶福兴,王志平,等.热障涂层材料的研究进展 [J].材料保护,2011,44(3):50-53.HAN Y J,YE F X,WANG Z P,et al.Research progress of thermal barrier coating materials [J].Materials Protection,2011,44(3):50-53(in Chinese).
参考文献 4
陈和兴,金展鹏,周克崧.等离子喷涂热障涂层失效机理的研究[J].广东有色金属学报,2002,12(2):116-119.CHEN H X,JIN Z P,ZHOU K S.Study on failure mecha-nism of plasma sprayed thermal barrier coating[J].Journal of Guangdong Non-Ferrous Metals,2002,12(2):116-119(in Chinese).
参考文献 5
LI G R,XIE H,YANG G J,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅰ:An overall evolution with two-tage kinetics[J].Journal of the American Ceramic Soci-ety,2017,100(5):2176-2189.
参考文献 6
LI G R,XIE H,YANG G J,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅱ:Multiscale multipoint in-terconnection enhanced initial kinetics[J].Journal of the A-merican Ceramic Society,2017,100(9):4240-4251.
参考文献 7
LI G R,YANG G J,Li C X,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅲ:Substrate constraint effect on healing of 2D pores[J].Journal of the American Ceramic Society,2018,101(8):3636-3648.
参考文献 8
HUANG J,WANG W,YU J,et al.Effect of particle size on the micro-cracking of plasma-sprayed YSZ coatings during thermal cycle testing[J].Journal of Thermal Spray Technolo-gy,2017,26:1-9.
参考文献 9
ZHONG X,ZHAO H,ZHOU X,et al.Thermal shock be-havior of toughened gadolinium zirconate/YSZ double-ceram-ic-layered thermal barrier coating [J].Journal of Alloys & Compounds,2014,593(593):50-55.
参考文献 10
DENG W,AN Y L,HOU G,et al.Effect of substrate pre-heating treatment on the microstructure and ultrasonic cavita-tion erosion behavior of plasma-sprayed YSZ coatings [J].Ultrasonics Sonochemistry,2018,46:1-9.
参考文献 11
叶福兴,吕雁兵,郝利军,等.QT500 表面化学镀镍磷层对8YSZ热障涂层抗热震性能的影响[J].天津大学学报:自然科学与工程技术版,2016,49(1):15-20.YE H X,LV Y B,HAO L J,et al.Influence of chemical ni-p plating on thermal shock resistance of 8YSZ thermal barrier coatings on QT500 substrate[J].Journal of Tianjin Universi-ty(Science and Technology),2016,49(1):15-20(in Chinese).
参考文献 12
LLAVSKY J,STALICK J K.Phase composition and its changes during annealing of plasma-sprayed YSZ[J].Sur-face & Coatings Technology,2000,127(2-3):120-129.
参考文献 13
张巍.氧化锆基陶瓷热障涂层的研究进展[J].航空工程进展,2018,9(4):18-36.ZHANG W.Progress on zirconia-based ceramics for thermal barrier coatings[J].Advances in Aeronautical Science and Engineering,2018,9(4):18-36(in Chinese).
参考文献 14
JING F,REN X,WANG X,et al.Thermal conductivity of ytterbia-stabilized zirconia[J].Scripta Materialia,2012,66(1):41-44.
参考文献 15
OCHROMBEL R,SCHNEIDER J,HILDMANN B,et al.Thermal expansion of EB-PVD yttria stabilized zirconia[J].Journal of the European Ceramic Society,2010,30(12):2491-2496.
参考文献 16
吴秀刚,李晨希.大气等离子喷涂热障涂层的失效机理及研究进展[J].材料保护,2013,46(10):48-51.WU X G,LI C X.Failure mechanism and research progress of atmospheric plasma sprayed thermal barrier coatings[J].Materials Protection,2013,46(10):48-51(in Chinese).
参考文献 17
REN X,ZHAO M,FENG J,et al.Phase transformation be-havior in air plasma sprayed yttria stabilized zirconia coating [J].Journal of Alloys & Compounds,2018,750:189-196.
参考文献 18
薛召露,郭洪波,宫声凯,等.新型热障涂层陶瓷隔热层材料[J].航空材料学报,2018,38(2):10-20.XUE Z L,GUO H B,GONG S K,et al.New thermal barri-er coating ceramic insulation material[J].Journal of Aero-nautical Materials,2018,38(2):10-20(in Chinese).
参考文献 19
VASSEN R,CAO X Q,TIETZ F,et al.Zirconates as new materials for thermal barrier coatings[J].Journal of the A-merican Ceramic Society,2000,83(8):2023-2028.
参考文献 20
ZHAO M,PAN W,WAN C L,et al.Defect engineering in development of low thermal conductivity materials:A review [J].Journal of the European Ceramic Society,2017,37(1):1-13.
参考文献 21
BAKAN E,VASSEN R.Ceramic top coats of plasma-sprayed thermal barrier coatings:materials,processes,and properties [J].Journal of Thermal Spray Technology,2017,26(6):992-1010.
参考文献 22
WANG C J,WANG Y,CHENG Y L,et al.Preparation and thermophysical properties of nano-sized Ln2Zr2O7(Ln = La,Nd,Sm,and Gd)ceramics with pyrochlore structure[J].Journal of Materials Science,2012,47(10):4392-4399.
参考文献 23
王铀,王亮.新型锆酸盐基热障涂层材料的研究进展 [J].中国表面工程,2009,22(6):8-18.WANG Y,WANG L.Research progress of new types of zir-conate-based thermal barrier coatings[J].China Surface En-gineering,2009,22(6):8-18(in Chinese).
参考文献 24
牟仁德,许振华,贺世美,等.La2(Zr0.7Ce0.3)2O7-新型高温热障涂层[J].材料工程,2009(7):67-71.MOU R D,XUE Z H,HE S M,et al.La-2(Zr0.7Ce0.3)2O7-A new oxide ceramic material for thermal barrier coatings [J].Journal of Materials Engineering,2009(7):67-71(in Chinese).
参考文献 25
KONG L G,KARATCHEVTSEVA I,GREGG D J,et al.A novel chemical route to prepareLn2Zr2O7pyrochlore [J].Journal of the American Ceramic Society,2013,96(3):935-941.
参考文献 26
NAGA S M,AWAAD M,EL-MAGHRABY H F,et al.Effect of La2Zr2O7 coat on the hot corrosion of multi-layer thermal barrier coatings [J].Materials & Design,2016,102:1-7.
参考文献 27
SIVAKUMAR S,PRAVEEN K,SHANMUGAVEL-AYUTHAM G.Preparation and thermophysical properties of plasma sprayed lanthanum zirconate[J].Materials Chemistry and Physics,2018,204:67-71.
参考文献 28
ZHANG J,GUO X Y,JUNG Y G,et al.Lanthanum zirco-nate based thermal barrier coatings:A review[J].Surface &Coatings Technology,2017,323:18-29.
参考文献 29
LIU T,CHEN X,YANG G J,et al.Properties evolution of plasma-sprayedLn2Zr2O7coating induced by pore structureevolution during thermal exposure[J].Ceramics Internation-al,2016,42(14):15485-15492.
参考文献 30
YANG G J,CHEN Z L,LI C X,et al.Microstructural and mechanical property evolutions of plasma-sprayed YSZ coat-ing during high-temperature exposure:Comparison study be-tween 8YSZ and 20YSZ[J].Journal of Thermal Spray Tech-nology,2013,22(8):1294-1302.
参考文献 31
MARSHALL D B,NOMA T,EVANS A G.A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation measurements[J].Journal of the Ameri-can Ceramic Society,1982,65(10):C175-C176.
参考文献 32
LI G R,YANG G J,LI C X,et al.Sintering characteristics of plasma-sprayed TBCs:Experimental analysis and an over-all modelling [J].Ceramics International,2018,44(3):2982-2990.
参考文献 33
ZHOU Y C,HASHIDA T.Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system[J].International Journal of Solids and Struc-tures,2001,38(24-25):4235-4264.
参考文献 34
CHENG B,YANG G J,ZHANG Q,et al.Gradient thermal cyclic behaviour ofLn2Zr2O7/YSZ DCL-TBCs with equiva-lent thermal insulation performance[J].Journal of the Euro-pean Ceramic Society,2018,38(4):1888-1896.
参考文献 35
ZHANG J,GUO X Y,JUNG Y G,et al.Lanthanum zirco-nate based thermal barrier coatings:A review[J].Surface & Coatings Technology,2017,323:18-29.
参考文献 36
WU Q,JI X J,PENG H R,et al.Phase stability of ce-mod-ifiedLn2Zr2O7coatings and chemical compatibility with YSZ [J].Journal of Thermal Spray Technology,2016,25(4):757-762.
参考文献 37
CLYNE T W,GILL S C.Residual stresses in thermal spray coatings and their effect on interfacial adhesion:A review of recent work [J].Journal of Thermal Spray Technology,1996,5(4):401-418.
参考文献 38
陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016(1):3-21.CHEN L,YANG G J,LI C X,et al.Wear-resisting applica-tion of thermal spray ceramic coating and coating structure control method[J].Advanced Ceramics,2016(1):3-21(in Chinese).
参考文献 39
LI C J,OHMORI A.Relationships between the microstruc-ture and properties of thermally sprayed deposits[J].Journal of Thermal Spray Technology,2002,11(3):365-374.
参考文献 40
MCPHERSON R.A review of microstructure and properties of plasma sprayed ceramic coatings[J].Surface & Coatings Technology,1989,39(89):173-181.
参考文献 41
KUCZYNSKI G C.Self-diffusion in sintering of metallic par-ticles[J].Transactions of the American Institute of Mining and Metallurgical Engineers,1949,185(2):169-178.
参考文献 42
李广荣,杨冠军.热障涂层高温跨尺度服役机理及多维度结构设计[J].现代技术陶瓷,2018,39(5):29-62.LI G R,YANG G J.High-temperature cross-scale service mechanism and multi-dimensional structural design of thermal barrier coatings [J].Advanced Ceramics,2018,39(5):29-62.(in Chinese).
参考文献 43
ERK K A,DESCHASEAUX C,TRICE R W.Grain-bounda-ry grooving of plasma-sprayed yttria-stabilized zirconia ther-mal barrier coatings [J].Journal of the American Ceramic Society,2006,89(5):1673-1678.
参考文献 44
TSIPAS S A,GOLOSNOY I O,DAMANI R,et al.The effect of a high thermal gradient on sintering and stiffening in the top coat of a thermal barrier coating system[J].Journal of Thermal Spray Technology,2004,13(3):370-376.
目录contents

    摘要

    热障涂层在高温服役过程中发生烧结和硬化,是引发涂层开裂和剥离失效的主要因素,因此掌握涂层烧结规律是进行涂层设计制备、寿命预测和工艺优化的前提。 文中采用等离子喷涂技术制备 La2 Zr2 O7热障涂层,在 1250 ℃ 条件下进行涂层高温热暴露试验,表征了涂层高温烧结过程中力学性能的变化规律,从孔隙结构的角度揭示了涂层高温烧结硬化机理。 研究结果表明,喷涂态 La2 Zr2 O7 涂层为典型的层状结构,硬度为(405±20) HV0.3 ,高温热暴露后涂层呈现先快后慢的硬化趋势,热暴露 200 h 后涂层硬度提高了 80%。 涂层结构分析表明,涂层物相保持不变,但涂层孔隙率呈现出先快后慢的下降规律。 坐标轴变换处理后发现,硬度和孔隙率均呈现以 10 h 为临界的双阶段特性。 通过对涂层孔隙结构的高温准原位观察,发现涂层孔隙初期多点桥接超快愈合、后期以边界推进方式缓慢烧结的双阶段烧结现象, 从而揭示了 La2 Zr2 O7 热障涂层分阶段硬化的烧结机理,从而为发展抗烧结高性能热障涂层提供了新的理论依据。

    Abstract

    The sintering of thermal barrier coatings leads to the stiffening during high temperature service, and thereby causes coating cracking and peeling failure. Therefore, understanding the coating sintering law is the premise of coating design, prepa- ration, lifetime prediction and process optimization. La2 Zr2 O7 thermal barrier coatings were prepared by plasma spraying technol- ogy. The high temperature thermal exposure test of coating was carried out at 1250 ℃ . Firstly, the mechanical properties of the coating during high temperature sintering were characterized. Subsequently, the high temperature sintering-stiffening mechanism of the coating was revealed from the perspective of pore structure. Results show that the as-sprayed La2 Zr2 O7 coating is a typical layered structure with a hardness of (405±20) HV0.3. The coating exhibits a first fast sintering and then slow hardening tendency after high temperature exposure, and the coating hardness after 200 h thermal exposure is increased by 80%. The analysis of the coating structure shows that the phase of the coating remaines unchanged, but the porosity of the coating shows a first fast de- crease and then slow decline. After the coordinate axis transformation, it is found that both hardness and porosity exhibites a two- stage characteristic with a critical duration of 10 h. The quasi-in-situ observation of the pore structure suggests that the initial healing of pores proceeds very fast in a form of multi-point contact, and that the subsequent healing slows down in a form of sin-gle-contact and growth. Therefore, this can be responsible for the two-stage sintering mechanism of the La2 Zr2 O7 , which makesfundamental contribution for the development of high performance thermal barrier coatings.

  • 0 引言

  • 热障涂层(Thermal barrier coatings, TBCs)是一种起隔热作用的功能涂层,可有效降低燃气轮机热端部件温度50~300 K,提高其承温上限,显著加速先进燃气轮机的发展。 因此,TBCs的制备已成为燃气轮机热端部件不可或缺的三大核心技术之一[1-3]。 对于TBCs而言,其隔热的功能性和服役的持久性是最重要的两个方面[4]。 典型的TBCs是由陶瓷层和金属粘结层组成的多层结构。 其中陶瓷层是核心部分,由低热导率的材料制备而成,主要起隔热作用,其在高温热暴露下的结构性能直接决定着热障涂层能否稳定有效运行。

  • 首先,获取的低热导率的陶瓷涂层多为多孔结构。 在长期的高温热暴露服役中,多孔结构不可避免会发生烧结,导致结构性能的显著变化,进而引发涂层隔热性能的衰退, 甚至剥落失效[5-9]。 其次,氧化钇稳定的氧化锆(Yttria-stabilized zirconia, YSZ) 是目前TBCs使用最广泛的陶瓷隔热材料[10-11]。 然而,YSZ在近些年逐渐暴露出了较大的弊端,因为随着新一代燃气轮机内温度的进一步提升,传统可稳定服役的YSZ,在超过1200℃ 温度,长时间热暴露会发生相结构的转变。 YSZ的相变伴随着3%-5%的体积膨胀和性能的变化,从而由于相变应力的产生而严重威胁涂层的服役稳定[12-17]。 因此,寻找具有高温相稳定特征的新型TBCs陶瓷材料,是进一步发展耐高温热障涂层的重要途径。 近年来,具有烧绿石结构的锆酸镧(La2Zr2O7,简称LZO)引起了极大的关注。 LZO不仅在高温下相结构稳定,同时具备更低的热导率,是一种极有潜力的YSZ替代材料[18-24],目前关于LZO材料在热障涂层方面的研究,主要集中于粉末合成工艺、涂层制备工艺和性能测试等方面[25-28]。 在LZO的高温服役行为方面,尤其是微观的结构性能演变规律研究较少。 为了有效实现LZO涂层的工程化应用,有必要进一步开展其高温演变规律研究。

  • 文中主要研究了大气等离子喷涂制备的LZO涂层在高温下的烧结行为。 通过微观结构和力学性能的表征,阐明涂层的高温烧结中孔隙结构与性能之间关系,为发展抗烧结的新一代高性能长寿命热障涂层提供依据。

  • 1 试验

  • 1.1 涂层的制备与处理

  • 陶瓷层粉末选用商用团聚球型LZO粉末(12~85 μm,兆益,益阳),陶瓷层制备采用大气等离子喷涂设备(GP-80,80 kW级,中国,九江)。 喷涂参数如表1 所示。 选用不锈钢基体,喷涂前作喷砂处理,在基体表面沉积约300 μm的涂层。 在涂层制备结束后,采用盐酸去除不锈钢基体,获取自由态的陶瓷涂层。 随后将涂层在1250℃ 下等温处理200 h,以探究涂层的烧结规律。

  • 表1 等离子喷涂工艺参数

  • Table1 Plasma spraying process parameters

  • 1.2 结构与性能表征

  • LZO陶瓷层的微观形貌采用扫描电子显微镜( SEM, TESCAN MIRA 3, Czech Republic) 来获取。 采用图像分析法,通过扫描电镜背散射电子图像获取涂层抛光截面图,利用孔隙与涂层材料的对比度差异性,以黑、灰区域占图片中的比例作为表观孔隙率,统计并计算10 张截面图的比例平均值,获得最终表观孔隙率。 LZO相结构特征利用X射线衍射( XRD, Bruker, D8 Advance, Germany)表征。

  • 试验利用SEM,采用准原位的方法观察孔隙的愈合行为,基本原理是通过图片定位原点的方式获取不同热处理时间后同一目标位置的形貌演变,具体步骤可参考作者其他相关报道[5-7]

  • 利用显微维氏硬度计(Buehler micromet 5104, USA)在涂层的抛光截面上测量热障涂层的维氏硬度,针对块体材料而言,采用压痕法测硬度得到的是材料的本征属性,而等离子喷涂陶瓷涂层是典型的多孔结构,可视为陶瓷材料与孔隙率的复合材料,采用压痕法得到的是涂层的表观硬度,是陶瓷材料本征属性与结构的一种综合力学性能反映。 测试过程载荷选取2.94 N,保载30 s[29-31]

  • 2 结果与讨论

  • 2.1 喷涂态涂层形貌

  • 图1 显示了初始喷涂态LZO涂层的自由表面形貌、抛光截面组织。 从涂层截面可以发现,涂层呈现出明显的层状结构,在层状结构之间存在大量的2D孔隙[7]和3D球孔。 实际上,涂层的2D孔隙包含片层间的未结合区域(称之为层间2D孔隙)和片层内的纵向裂纹(称之为层内2D裂纹)。 除了大量存在的微米及亚微米级孔隙,涂层断面还可观察到尺度达数十微米的大孔隙。这些孔隙实际上是抛光涂层在制备的过程中,由于弱结合的片层剥落而引起的[32]。 从涂层的表面形貌可以发现,涂层是由片层逐渐堆叠而形成,且涂层表面凹凸不平。

  • 图1 LZO涂层的表面形貌和抛光截面组织

  • Fig.1 Surface topographies and polished cross-sectional structure of LZO coating

  • 2.2 高温烧结引起的涂层硬度变化

  • 涂层在高温烧结过程中不可避免地发生烧结而逐渐硬化。 由图2 可知,烧结引发涂层硬度明显的非线性变化:在烧结初期涂层硬度增长极为迅速,随后增长显著变缓。 这种非线性变化与YSZ陶瓷涂层的烧结类似[32]。 在200 h热暴露后,涂层硬度相较初始喷涂态提高了79%,达到LZO块材(900 HV)的80%左右。 实际上,涂层硬度的提高一定程度上反映了应变容限降低[33-34], 逐渐刚化的涂层在实际热循环服役过程中,在热失配应力的作用下极易开裂。 这是涂层在长时间高温服役后易开裂剥落的主要原因之一。

  • 图2 涂层在热暴露过程中的硬度变化

  • Fig.2 Change in coating hardness during thermal exposure

  • 2.3 涂层的物相分析

  • 涂层相变是影响力学性能改变的重要因素,其相变通常伴随着大的体积变化,在热循环过程中将产生应力,直接影响涂层服役寿命。 图3 显示了涂层在长时间高温热处理后的相结构变化。由图可知,LZO涂层在1250℃ 下烧结后,其烧绿石(P)主体相结构未发生改变,在30°附近发现少量ZrO2 峰,这是由于在等离子喷涂制备陶瓷层过程中大功率条件下,La2O3 的优先挥发会导致非化学计量比的LZO生成,而在烧结后ZrO2峰轻微长大[34]。 这是相结构稳定的LZO相比于传统YSZ的优势之一,与文献报道一致[35-36]。因此,LZO涂层烧结过程中的力学性能的大幅度变化并非由相结构变化引起。

  • 图3 LZO涂层高温热处理前后的相结构特征

  • Fig.3 Phase structure of LZO coating before and after thermal exposure

  • 2.4 高温烧结过程中涂层的显微组织变化

  • 通常涂层力学性能的改变是由涂层显微组织的变化引起的[37]。 图4 显示了LZO涂层不同热暴露时间后的抛光截面形貌。 由图4 可以发现,热暴露后,涂层的孔隙明显减少,在初始态下的数十微米的孔隙已消失。 这主要是由于孔隙愈合使得层间结合强度加强,片层剥落变得困难[32]。 而初始涂层中存在的横向孔隙、纵向裂纹呈现出线条状,横向孔隙主要是等离子喷涂后涂层的层间未结合区域[38],其宽度明显大于纵向的裂纹。 随着烧结时间延长,细小的裂纹、孔隙优先愈合。 在热暴露10 h后,层间的裂纹和小尺寸孔隙呈现的线条状已经虚线化,而较大尺寸的横向孔隙仍然清晰可见;在热暴露50 h后,小尺寸的裂纹、孔隙已经发展成零星的小圆点,而较大尺寸的孔隙也逐渐开始由小尺寸部位优先多点接触;在热暴露200 h后,较大尺寸的孔隙也发展成点线状,涂层致密程度变大,出现多处致密程度非常高的区域,同时涂层层状结构也逐渐消失。 因此,涂层在长时间热暴露后横截面致密度已经趋向于块材,可以推测在足够长的高温烧结的条件下,涂层将逼近块材的力学性能。

  • 图4 LZO涂层在热暴露中的抛光截面演变

  • Fig.4 Evolution of polished cross-section of LZO coating during thermal exposure

  • 孔隙数量的变化由表观孔隙率反映,图5 显示了LZO涂层表观孔隙率在高温热暴露中的变化。 可以发现,涂层孔隙率的变化呈现出初期较为显著、随后趋于平缓的特征。 例如,表观孔隙率在烧结前10 h由15.0%下降到了10.4%,下降幅度达30.4%;而随后10 h到200 h下降幅度仅为6.0%。 这种显微组织的变化与硬度的变化规律相一致。

  • 图5 烧结过程中表观孔隙率的变化规律

  • Fig.5 Change law of apparent porosity during sintering

  • 为了更加直观地反映硬度与表观孔隙在烧结过程中的阶段性变化规律,作硬度与时间的半对数图,如图6 所示,其中初始喷涂态(0 h)采用0.1 h代替。 可以发现,涂层的硬度和表观孔隙率的变化均可以10 h左右为临界时间节点大致分为两个阶段[5]:在Stage-Ⅰ,时间短而变量幅度大,其增长速率要显著快于Stage-Ⅱ。 这表明在烧结初期,孔隙发生了急剧变化,硬度也随之发生变化;在Stage-Ⅱ,时间长而变化趋于平缓。 值得一提的是,在同一阶段对数据进行回归分析,数据都能较好拟合于一条线性曲线。 这表明在不同的阶段烧结是以不同的机制进行的。 综上可知,烧结导致的LZO涂层结构性能变化多发生于初期热暴露阶段,而孔隙愈合在烧结过程中发挥重要作用,并且与力学性能的变化相关,这是等离子喷涂陶瓷涂层的共性特性[39-40]

  • 图6 硬度与孔隙率随热暴露时间的变化

  • Fig.6 Hardness and porosity as a function of heat exposure time

  • 为了理解涂层在烧结过程中微观结构与力学性能的关系,研究选取了涂层掰断面上典型的包含层间孔隙和层内裂纹的区域进行准原位观察,结果如图7 所示。 由图可知,初始状态下涂层片层由柱状晶组成,层内存在小的裂纹和多尺度的孔隙;在高温烧结过程中,小裂纹、孔隙优先愈合,大的孔隙则愈合较慢。 值得一提的是,孔隙表面(即片层表面)在初始喷涂态较为平滑;在高温热处理后,典型的柱状晶逐渐转变为等轴晶粒并慢慢长大,且平滑的表面出现了明显的粗糙起伏。 这些凸起是由柱状晶晶界的热蚀沟和晶粒内的小面化效应共同引起的[6]。 随后,这些凸起使得孔隙对立面相互接触,引发孔隙多点桥接的现象,如图7(b)(c)所示。 烧结的过程即是通过物质转移而降低体系整体能量的过程。 这些桥接的区域提供了更多物质转移的通道[41],因此无疑会加速烧结的进行[6,42-43]。 由于在初期几乎每个孔隙均存在较窄的孔隙尖端,且涂层存在一定量整体尺寸较小的裂纹和孔隙,因此,多点桥接现象是更为明显, 从而使得初期烧结极为显著。

  • 而涂层在热暴露一定的时间后(例如,研究所提出的10 h),宽度较小的孔隙和尖端区域已经基本愈合。 剩余的孔隙区域通常具有较宽的宽度,较难通过表面起伏实现多点接触,因此,进一步的愈合将会以已愈合区域的单边界推进形式进行,这无疑降低了孔隙的愈合速率。 由此表明,LZO涂层的烧结行为与传统粉末的烧结不尽相同[44],它是与其材料和涂层的微观结构综合相关的。 综上,涂层内孔隙的分阶段愈合机制可较好地解释涂层烧结分阶段硬化现象。

  • 图7 不同烧结时间涂层断面的微观结构

  • Fig.7 Microstructure of coated crucible section for different sintering time

  • 3 展望

  • 大气等离子喷涂的热障涂层,由于具有大量的孔隙,而比块材具备更低热导率即高的隔热性能。 在烧结过程中,孔隙不断发生愈合,应变容限降低的同时,隔热性能也显著下降。 其中2D孔隙的愈合是热障涂层隔热性能和应变容限衰退的主要原因,而2D孔隙的愈合是和片层表面的起伏程度相关的。 因此在未来的涂层设计中,可在涂层内适当置入具有较大张开宽度的2D孔隙,降低片层表面起伏引发的多点接触,从而使得新型涂层在长时间热暴露服役中保持高隔热。

  • 烧结引发的刚化会显著降低涂层的协调应变能力,从而在反复的热循环过程中逐渐开裂失效。 因此,在未来的涂层设计中,可通过孔隙尺度和取向的调控,设计具有宏观柱状、微观层状的新型结构。 在高温热暴露服役中,涂层微观区域发生刚化,而宏观由于柱状结构的存在始终保持高的应变容限,从而提高涂层的服役寿命。

  • 4 结论

  • 利用大气等离子喷涂制备出具有层状结构的LZO陶瓷涂层,研究了LZO涂层在1250℃ 热暴露中的结构与力学性能随时间的变化规律。得到如下结论:

  • (1) 涂层在高温保温过程中发生烧结,表观孔隙率和硬度呈现明显的双阶段变化规律。 初期变化较为显著,随后变化趋于平缓。 在烧结200 h后,涂层的硬度增加了79%,达到LZO块材的80%左右。 烧结前后涂层的相结构未发生改变,保持烧绿石结构。

  • (2) 涂层在烧结过程中,孔隙的愈合在不同的阶段呈现出不同的机制。 在初始热暴露阶段,孔隙以多点接触的方式愈合,呈现出了极快的愈合速率;而在随后的热暴露阶段,孔隙愈合以已愈合区域的单边界推进方式进行,愈合速率显著降低。

  • (3) 孔隙的愈合在涂层烧结过程中发挥重要作用。 孔隙不同阶段的愈合机制较好地解释了La2Zr2O7 热障涂层在高温热暴露下力学性能分阶段变化的规律,从而为发展抗烧结高性能热障涂层提供了参考依据。

  • 参考文献

    • [1] CAO X Q,VASSEN R,FISCHER W,et al.Lanthanum-ce-rium oxide as a thermal barrier-coating material for high-tem-perature applications [J].Advanced Materials,2003,15(17):1438-1442.

    • [2] ZHENG L,GUO H B,GUO L,et al.New generation ther-mal barrier coatings for ultrahigh temperature applications[J].Journal of Aeronautical Materials,2012,32(32):14-24.

    • [3] 韩玉君,叶福兴,王志平,等.热障涂层材料的研究进展 [J].材料保护,2011,44(3):50-53.HAN Y J,YE F X,WANG Z P,et al.Research progress of thermal barrier coating materials [J].Materials Protection,2011,44(3):50-53(in Chinese).

    • [4] 陈和兴,金展鹏,周克崧.等离子喷涂热障涂层失效机理的研究[J].广东有色金属学报,2002,12(2):116-119.CHEN H X,JIN Z P,ZHOU K S.Study on failure mecha-nism of plasma sprayed thermal barrier coating[J].Journal of Guangdong Non-Ferrous Metals,2002,12(2):116-119(in Chinese).

    • [5] LI G R,XIE H,YANG G J,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅰ:An overall evolution with two-tage kinetics[J].Journal of the American Ceramic Soci-ety,2017,100(5):2176-2189.

    • [6] LI G R,XIE H,YANG G J,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅱ:Multiscale multipoint in-terconnection enhanced initial kinetics[J].Journal of the A-merican Ceramic Society,2017,100(9):4240-4251.

    • [7] LI G R,YANG G J,Li C X,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅲ:Substrate constraint effect on healing of 2D pores[J].Journal of the American Ceramic Society,2018,101(8):3636-3648.

    • [8] HUANG J,WANG W,YU J,et al.Effect of particle size on the micro-cracking of plasma-sprayed YSZ coatings during thermal cycle testing[J].Journal of Thermal Spray Technolo-gy,2017,26:1-9.

    • [9] ZHONG X,ZHAO H,ZHOU X,et al.Thermal shock be-havior of toughened gadolinium zirconate/YSZ double-ceram-ic-layered thermal barrier coating [J].Journal of Alloys & Compounds,2014,593(593):50-55.

    • [10] DENG W,AN Y L,HOU G,et al.Effect of substrate pre-heating treatment on the microstructure and ultrasonic cavita-tion erosion behavior of plasma-sprayed YSZ coatings [J].Ultrasonics Sonochemistry,2018,46:1-9.

    • [11] 叶福兴,吕雁兵,郝利军,等.QT500 表面化学镀镍磷层对8YSZ热障涂层抗热震性能的影响[J].天津大学学报:自然科学与工程技术版,2016,49(1):15-20.YE H X,LV Y B,HAO L J,et al.Influence of chemical ni-p plating on thermal shock resistance of 8YSZ thermal barrier coatings on QT500 substrate[J].Journal of Tianjin Universi-ty(Science and Technology),2016,49(1):15-20(in Chinese).

    • [12] LLAVSKY J,STALICK J K.Phase composition and its changes during annealing of plasma-sprayed YSZ[J].Sur-face & Coatings Technology,2000,127(2-3):120-129.

    • [13] 张巍.氧化锆基陶瓷热障涂层的研究进展[J].航空工程进展,2018,9(4):18-36.ZHANG W.Progress on zirconia-based ceramics for thermal barrier coatings[J].Advances in Aeronautical Science and Engineering,2018,9(4):18-36(in Chinese).

    • [14] JING F,REN X,WANG X,et al.Thermal conductivity of ytterbia-stabilized zirconia[J].Scripta Materialia,2012,66(1):41-44.

    • [15] OCHROMBEL R,SCHNEIDER J,HILDMANN B,et al.Thermal expansion of EB-PVD yttria stabilized zirconia[J].Journal of the European Ceramic Society,2010,30(12):2491-2496.

    • [16] 吴秀刚,李晨希.大气等离子喷涂热障涂层的失效机理及研究进展[J].材料保护,2013,46(10):48-51.WU X G,LI C X.Failure mechanism and research progress of atmospheric plasma sprayed thermal barrier coatings[J].Materials Protection,2013,46(10):48-51(in Chinese).

    • [17] REN X,ZHAO M,FENG J,et al.Phase transformation be-havior in air plasma sprayed yttria stabilized zirconia coating [J].Journal of Alloys & Compounds,2018,750:189-196.

    • [18] 薛召露,郭洪波,宫声凯,等.新型热障涂层陶瓷隔热层材料[J].航空材料学报,2018,38(2):10-20.XUE Z L,GUO H B,GONG S K,et al.New thermal barri-er coating ceramic insulation material[J].Journal of Aero-nautical Materials,2018,38(2):10-20(in Chinese).

    • [19] VASSEN R,CAO X Q,TIETZ F,et al.Zirconates as new materials for thermal barrier coatings[J].Journal of the A-merican Ceramic Society,2000,83(8):2023-2028.

    • [20] ZHAO M,PAN W,WAN C L,et al.Defect engineering in development of low thermal conductivity materials:A review [J].Journal of the European Ceramic Society,2017,37(1):1-13.

    • [21] BAKAN E,VASSEN R.Ceramic top coats of plasma-sprayed thermal barrier coatings:materials,processes,and properties [J].Journal of Thermal Spray Technology,2017,26(6):992-1010.

    • [22] WANG C J,WANG Y,CHENG Y L,et al.Preparation and thermophysical properties of nano-sized Ln2Zr2O7(Ln = La,Nd,Sm,and Gd)ceramics with pyrochlore structure[J].Journal of Materials Science,2012,47(10):4392-4399.

    • [23] 王铀,王亮.新型锆酸盐基热障涂层材料的研究进展 [J].中国表面工程,2009,22(6):8-18.WANG Y,WANG L.Research progress of new types of zir-conate-based thermal barrier coatings[J].China Surface En-gineering,2009,22(6):8-18(in Chinese).

    • [24] 牟仁德,许振华,贺世美,等.La2(Zr0.7Ce0.3)2O7-新型高温热障涂层[J].材料工程,2009(7):67-71.MOU R D,XUE Z H,HE S M,et al.La-2(Zr0.7Ce0.3)2O7-A new oxide ceramic material for thermal barrier coatings [J].Journal of Materials Engineering,2009(7):67-71(in Chinese).

    • [25] KONG L G,KARATCHEVTSEVA I,GREGG D J,et al.A novel chemical route to prepareLn2Zr2O7pyrochlore [J].Journal of the American Ceramic Society,2013,96(3):935-941.

    • [26] NAGA S M,AWAAD M,EL-MAGHRABY H F,et al.Effect of La2Zr2O7 coat on the hot corrosion of multi-layer thermal barrier coatings [J].Materials & Design,2016,102:1-7.

    • [27] SIVAKUMAR S,PRAVEEN K,SHANMUGAVEL-AYUTHAM G.Preparation and thermophysical properties of plasma sprayed lanthanum zirconate[J].Materials Chemistry and Physics,2018,204:67-71.

    • [28] ZHANG J,GUO X Y,JUNG Y G,et al.Lanthanum zirco-nate based thermal barrier coatings:A review[J].Surface &Coatings Technology,2017,323:18-29.

    • [29] LIU T,CHEN X,YANG G J,et al.Properties evolution of plasma-sprayedLn2Zr2O7coating induced by pore structureevolution during thermal exposure[J].Ceramics Internation-al,2016,42(14):15485-15492.

    • [30] YANG G J,CHEN Z L,LI C X,et al.Microstructural and mechanical property evolutions of plasma-sprayed YSZ coat-ing during high-temperature exposure:Comparison study be-tween 8YSZ and 20YSZ[J].Journal of Thermal Spray Tech-nology,2013,22(8):1294-1302.

    • [31] MARSHALL D B,NOMA T,EVANS A G.A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation measurements[J].Journal of the Ameri-can Ceramic Society,1982,65(10):C175-C176.

    • [32] LI G R,YANG G J,LI C X,et al.Sintering characteristics of plasma-sprayed TBCs:Experimental analysis and an over-all modelling [J].Ceramics International,2018,44(3):2982-2990.

    • [33] ZHOU Y C,HASHIDA T.Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system[J].International Journal of Solids and Struc-tures,2001,38(24-25):4235-4264.

    • [34] CHENG B,YANG G J,ZHANG Q,et al.Gradient thermal cyclic behaviour ofLn2Zr2O7/YSZ DCL-TBCs with equiva-lent thermal insulation performance[J].Journal of the Euro-pean Ceramic Society,2018,38(4):1888-1896.

    • [35] ZHANG J,GUO X Y,JUNG Y G,et al.Lanthanum zirco-nate based thermal barrier coatings:A review[J].Surface & Coatings Technology,2017,323:18-29.

    • [36] WU Q,JI X J,PENG H R,et al.Phase stability of ce-mod-ifiedLn2Zr2O7coatings and chemical compatibility with YSZ [J].Journal of Thermal Spray Technology,2016,25(4):757-762.

    • [37] CLYNE T W,GILL S C.Residual stresses in thermal spray coatings and their effect on interfacial adhesion:A review of recent work [J].Journal of Thermal Spray Technology,1996,5(4):401-418.

    • [38] 陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016(1):3-21.CHEN L,YANG G J,LI C X,et al.Wear-resisting applica-tion of thermal spray ceramic coating and coating structure control method[J].Advanced Ceramics,2016(1):3-21(in Chinese).

    • [39] LI C J,OHMORI A.Relationships between the microstruc-ture and properties of thermally sprayed deposits[J].Journal of Thermal Spray Technology,2002,11(3):365-374.

    • [40] MCPHERSON R.A review of microstructure and properties of plasma sprayed ceramic coatings[J].Surface & Coatings Technology,1989,39(89):173-181.

    • [41] KUCZYNSKI G C.Self-diffusion in sintering of metallic par-ticles[J].Transactions of the American Institute of Mining and Metallurgical Engineers,1949,185(2):169-178.

    • [42] 李广荣,杨冠军.热障涂层高温跨尺度服役机理及多维度结构设计[J].现代技术陶瓷,2018,39(5):29-62.LI G R,YANG G J.High-temperature cross-scale service mechanism and multi-dimensional structural design of thermal barrier coatings [J].Advanced Ceramics,2018,39(5):29-62.(in Chinese).

    • [43] ERK K A,DESCHASEAUX C,TRICE R W.Grain-bounda-ry grooving of plasma-sprayed yttria-stabilized zirconia ther-mal barrier coatings [J].Journal of the American Ceramic Society,2006,89(5):1673-1678.

    • [44] TSIPAS S A,GOLOSNOY I O,DAMANI R,et al.The effect of a high thermal gradient on sintering and stiffening in the top coat of a thermal barrier coating system[J].Journal of Thermal Spray Technology,2004,13(3):370-376.

  • 参考文献

    • [1] CAO X Q,VASSEN R,FISCHER W,et al.Lanthanum-ce-rium oxide as a thermal barrier-coating material for high-tem-perature applications [J].Advanced Materials,2003,15(17):1438-1442.

    • [2] ZHENG L,GUO H B,GUO L,et al.New generation ther-mal barrier coatings for ultrahigh temperature applications[J].Journal of Aeronautical Materials,2012,32(32):14-24.

    • [3] 韩玉君,叶福兴,王志平,等.热障涂层材料的研究进展 [J].材料保护,2011,44(3):50-53.HAN Y J,YE F X,WANG Z P,et al.Research progress of thermal barrier coating materials [J].Materials Protection,2011,44(3):50-53(in Chinese).

    • [4] 陈和兴,金展鹏,周克崧.等离子喷涂热障涂层失效机理的研究[J].广东有色金属学报,2002,12(2):116-119.CHEN H X,JIN Z P,ZHOU K S.Study on failure mecha-nism of plasma sprayed thermal barrier coating[J].Journal of Guangdong Non-Ferrous Metals,2002,12(2):116-119(in Chinese).

    • [5] LI G R,XIE H,YANG G J,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅰ:An overall evolution with two-tage kinetics[J].Journal of the American Ceramic Soci-ety,2017,100(5):2176-2189.

    • [6] LI G R,XIE H,YANG G J,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅱ:Multiscale multipoint in-terconnection enhanced initial kinetics[J].Journal of the A-merican Ceramic Society,2017,100(9):4240-4251.

    • [7] LI G R,YANG G J,Li C X,et al.A comprehensive sinte-ring mechanism for TBCs-part Ⅲ:Substrate constraint effect on healing of 2D pores[J].Journal of the American Ceramic Society,2018,101(8):3636-3648.

    • [8] HUANG J,WANG W,YU J,et al.Effect of particle size on the micro-cracking of plasma-sprayed YSZ coatings during thermal cycle testing[J].Journal of Thermal Spray Technolo-gy,2017,26:1-9.

    • [9] ZHONG X,ZHAO H,ZHOU X,et al.Thermal shock be-havior of toughened gadolinium zirconate/YSZ double-ceram-ic-layered thermal barrier coating [J].Journal of Alloys & Compounds,2014,593(593):50-55.

    • [10] DENG W,AN Y L,HOU G,et al.Effect of substrate pre-heating treatment on the microstructure and ultrasonic cavita-tion erosion behavior of plasma-sprayed YSZ coatings [J].Ultrasonics Sonochemistry,2018,46:1-9.

    • [11] 叶福兴,吕雁兵,郝利军,等.QT500 表面化学镀镍磷层对8YSZ热障涂层抗热震性能的影响[J].天津大学学报:自然科学与工程技术版,2016,49(1):15-20.YE H X,LV Y B,HAO L J,et al.Influence of chemical ni-p plating on thermal shock resistance of 8YSZ thermal barrier coatings on QT500 substrate[J].Journal of Tianjin Universi-ty(Science and Technology),2016,49(1):15-20(in Chinese).

    • [12] LLAVSKY J,STALICK J K.Phase composition and its changes during annealing of plasma-sprayed YSZ[J].Sur-face & Coatings Technology,2000,127(2-3):120-129.

    • [13] 张巍.氧化锆基陶瓷热障涂层的研究进展[J].航空工程进展,2018,9(4):18-36.ZHANG W.Progress on zirconia-based ceramics for thermal barrier coatings[J].Advances in Aeronautical Science and Engineering,2018,9(4):18-36(in Chinese).

    • [14] JING F,REN X,WANG X,et al.Thermal conductivity of ytterbia-stabilized zirconia[J].Scripta Materialia,2012,66(1):41-44.

    • [15] OCHROMBEL R,SCHNEIDER J,HILDMANN B,et al.Thermal expansion of EB-PVD yttria stabilized zirconia[J].Journal of the European Ceramic Society,2010,30(12):2491-2496.

    • [16] 吴秀刚,李晨希.大气等离子喷涂热障涂层的失效机理及研究进展[J].材料保护,2013,46(10):48-51.WU X G,LI C X.Failure mechanism and research progress of atmospheric plasma sprayed thermal barrier coatings[J].Materials Protection,2013,46(10):48-51(in Chinese).

    • [17] REN X,ZHAO M,FENG J,et al.Phase transformation be-havior in air plasma sprayed yttria stabilized zirconia coating [J].Journal of Alloys & Compounds,2018,750:189-196.

    • [18] 薛召露,郭洪波,宫声凯,等.新型热障涂层陶瓷隔热层材料[J].航空材料学报,2018,38(2):10-20.XUE Z L,GUO H B,GONG S K,et al.New thermal barri-er coating ceramic insulation material[J].Journal of Aero-nautical Materials,2018,38(2):10-20(in Chinese).

    • [19] VASSEN R,CAO X Q,TIETZ F,et al.Zirconates as new materials for thermal barrier coatings[J].Journal of the A-merican Ceramic Society,2000,83(8):2023-2028.

    • [20] ZHAO M,PAN W,WAN C L,et al.Defect engineering in development of low thermal conductivity materials:A review [J].Journal of the European Ceramic Society,2017,37(1):1-13.

    • [21] BAKAN E,VASSEN R.Ceramic top coats of plasma-sprayed thermal barrier coatings:materials,processes,and properties [J].Journal of Thermal Spray Technology,2017,26(6):992-1010.

    • [22] WANG C J,WANG Y,CHENG Y L,et al.Preparation and thermophysical properties of nano-sized Ln2Zr2O7(Ln = La,Nd,Sm,and Gd)ceramics with pyrochlore structure[J].Journal of Materials Science,2012,47(10):4392-4399.

    • [23] 王铀,王亮.新型锆酸盐基热障涂层材料的研究进展 [J].中国表面工程,2009,22(6):8-18.WANG Y,WANG L.Research progress of new types of zir-conate-based thermal barrier coatings[J].China Surface En-gineering,2009,22(6):8-18(in Chinese).

    • [24] 牟仁德,许振华,贺世美,等.La2(Zr0.7Ce0.3)2O7-新型高温热障涂层[J].材料工程,2009(7):67-71.MOU R D,XUE Z H,HE S M,et al.La-2(Zr0.7Ce0.3)2O7-A new oxide ceramic material for thermal barrier coatings [J].Journal of Materials Engineering,2009(7):67-71(in Chinese).

    • [25] KONG L G,KARATCHEVTSEVA I,GREGG D J,et al.A novel chemical route to prepareLn2Zr2O7pyrochlore [J].Journal of the American Ceramic Society,2013,96(3):935-941.

    • [26] NAGA S M,AWAAD M,EL-MAGHRABY H F,et al.Effect of La2Zr2O7 coat on the hot corrosion of multi-layer thermal barrier coatings [J].Materials & Design,2016,102:1-7.

    • [27] SIVAKUMAR S,PRAVEEN K,SHANMUGAVEL-AYUTHAM G.Preparation and thermophysical properties of plasma sprayed lanthanum zirconate[J].Materials Chemistry and Physics,2018,204:67-71.

    • [28] ZHANG J,GUO X Y,JUNG Y G,et al.Lanthanum zirco-nate based thermal barrier coatings:A review[J].Surface &Coatings Technology,2017,323:18-29.

    • [29] LIU T,CHEN X,YANG G J,et al.Properties evolution of plasma-sprayedLn2Zr2O7coating induced by pore structureevolution during thermal exposure[J].Ceramics Internation-al,2016,42(14):15485-15492.

    • [30] YANG G J,CHEN Z L,LI C X,et al.Microstructural and mechanical property evolutions of plasma-sprayed YSZ coat-ing during high-temperature exposure:Comparison study be-tween 8YSZ and 20YSZ[J].Journal of Thermal Spray Tech-nology,2013,22(8):1294-1302.

    • [31] MARSHALL D B,NOMA T,EVANS A G.A simple method for determining elastic-modulus-to-hardness ratios using knoop indentation measurements[J].Journal of the Ameri-can Ceramic Society,1982,65(10):C175-C176.

    • [32] LI G R,YANG G J,LI C X,et al.Sintering characteristics of plasma-sprayed TBCs:Experimental analysis and an over-all modelling [J].Ceramics International,2018,44(3):2982-2990.

    • [33] ZHOU Y C,HASHIDA T.Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system[J].International Journal of Solids and Struc-tures,2001,38(24-25):4235-4264.

    • [34] CHENG B,YANG G J,ZHANG Q,et al.Gradient thermal cyclic behaviour ofLn2Zr2O7/YSZ DCL-TBCs with equiva-lent thermal insulation performance[J].Journal of the Euro-pean Ceramic Society,2018,38(4):1888-1896.

    • [35] ZHANG J,GUO X Y,JUNG Y G,et al.Lanthanum zirco-nate based thermal barrier coatings:A review[J].Surface & Coatings Technology,2017,323:18-29.

    • [36] WU Q,JI X J,PENG H R,et al.Phase stability of ce-mod-ifiedLn2Zr2O7coatings and chemical compatibility with YSZ [J].Journal of Thermal Spray Technology,2016,25(4):757-762.

    • [37] CLYNE T W,GILL S C.Residual stresses in thermal spray coatings and their effect on interfacial adhesion:A review of recent work [J].Journal of Thermal Spray Technology,1996,5(4):401-418.

    • [38] 陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016(1):3-21.CHEN L,YANG G J,LI C X,et al.Wear-resisting applica-tion of thermal spray ceramic coating and coating structure control method[J].Advanced Ceramics,2016(1):3-21(in Chinese).

    • [39] LI C J,OHMORI A.Relationships between the microstruc-ture and properties of thermally sprayed deposits[J].Journal of Thermal Spray Technology,2002,11(3):365-374.

    • [40] MCPHERSON R.A review of microstructure and properties of plasma sprayed ceramic coatings[J].Surface & Coatings Technology,1989,39(89):173-181.

    • [41] KUCZYNSKI G C.Self-diffusion in sintering of metallic par-ticles[J].Transactions of the American Institute of Mining and Metallurgical Engineers,1949,185(2):169-178.

    • [42] 李广荣,杨冠军.热障涂层高温跨尺度服役机理及多维度结构设计[J].现代技术陶瓷,2018,39(5):29-62.LI G R,YANG G J.High-temperature cross-scale service mechanism and multi-dimensional structural design of thermal barrier coatings [J].Advanced Ceramics,2018,39(5):29-62.(in Chinese).

    • [43] ERK K A,DESCHASEAUX C,TRICE R W.Grain-bounda-ry grooving of plasma-sprayed yttria-stabilized zirconia ther-mal barrier coatings [J].Journal of the American Ceramic Society,2006,89(5):1673-1678.

    • [44] TSIPAS S A,GOLOSNOY I O,DAMANI R,et al.The effect of a high thermal gradient on sintering and stiffening in the top coat of a thermal barrier coating system[J].Journal of Thermal Spray Technology,2004,13(3):370-376.

  • 手机扫一扫看