- 表面工程研究 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

陈飞(1971—),男(汉),博士,教授;研究方向:材料表面改性技术;E-mail:chenfei@bipt.edu.cn

中图分类号:TG174.44;TG178

文献标识码:A

文章编号:1007-9289(2020)02-0097-14

DOI:10.11933/j.issn.1007-9289.20191015001

参考文献 1
GEETHA M,SINGH A K,ASOKAMANI R,et al.Ti based biomaterials,the ultimate choice for orthopaedic implants-a review[J].Progress in Materials Science,2009,54(3):397-425.
参考文献 2
SIDAMBE A.Biocompatibility of advanced manufactured ti-tanium implants-a review[J].Materials(Basel),2014,7(12):8168-8188.
参考文献 3
NIINOMI M.Mechanical biocompatibilities of titanium alloys for biomedical applications [J].Mechanical Behavior Bio-medical Materials,2008,1(1):30-42.
参考文献 4
GONZALEZ E D,AFONSO C R M,NASCENTE P A P.Influence of Nb content on the structure,morphology,nano-structure,and properties of titanium-niobium magnetron sput-ter deposited coatings for biomedical applications[J].Surface & Coatings Technology,2017,326(15):424-428.
参考文献 5
LARA RODRIGUEZ L,SUNDARAM P A,ROSIM-FACHI-NI E,et al.Plasma electrolytic oxidation coatings on γ-TiAl alloy for potential biomedical applications [J].Biomedical Materials Research Part B,Applied Biomaterials,2014,102(5):988-1001.
参考文献 6
AGUILERA-CORREA J J,AUÑÓNÁ,BOIZA-SÁNCHEZ M,et al.Urine aluminum concentration as a possible implant biomarker of pseudomonas aeruginosa infection using a fluo-rine-and phosphorus-doped Ti-6Al-4V alloy with osseointe-gration capacity[J].ACS Omega,2019,4(7):11815-11823.
参考文献 7
SOTO-ALVAREDO J,BLANCO E,BETTMER J,et al.E-valuation of the biological effect of Ti generated debris from metal implants:ions and nanoparticles[J].Metallomics:In-tegrated Biometal Science,2014,6(9):1702-1708.
参考文献 8
SOUZA J C M,HENRIQUES M,TEUGHELS W,et al.Wear and corrosion interactions on titanium in oral environ-ment:literature review[J].Journal of Bio-and Tribo-Corro-sion,2015,1(2):1-13.
参考文献 9
MOHSENI E,ZALNEZHAD E,BUSHROA A R,et al.Ti/TiN/HA coating on Ti-6Al-4V for biomedical applications[J].Ceramics International,2015,41(10):14447-14457.
参考文献 10
MOHEDANO M,MATYKINA E,ARRABAL R,et al.Met-al release from ceramic coatings for dental implants [J].Dental Materials,2014,30(3):28-40.
参考文献 11
FAZEL M,SALIMIJAZI H R,GOLOZAR M A,et al.A comparison of corrosion,tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process [J].Applied Surface Science,2015,324:751-756.
参考文献 12
RUNA M J,MATHEW M T,ROCHA L A.Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems[J].Tribology International,2013,68:85-93.
参考文献 13
YU Y S,XIE L S,CHEN M H,et al.Surface characteris-tics and adhesive strength to epoxy of three different types of titanium alloys anodized in NaTESi electrolyte[J].Surface & Coatings Technology,2015,280:122-128.
参考文献 14
ZHANG F,HE J,CHEN K,et al.Microstructure evolution and mechanical properties of TiCN-Cr nano/micro composite coatings prepared by reactive plasma spraying[J].Applied Surface Science,2017,427:905-914.
参考文献 15
WENG F,CHEN C Z,YU H,et al.Research status of laser cladding on titanium and its alloys:A review[J].Materials & Design,2014,58:412-425.
参考文献 16
GAO A,HANG R,BAI L,et al.Electrochemical surface engineering of titanium-based alloys for biomedical applica-tion[J].Electrochimica Acta,2018,271:699-718.
参考文献 17
WANG J H,WANG J,LU Y,et al.Effects of single pulse energy on the properties of ceramic coating prepared by mi-cro-arc oxidation on Ti alloy[J].Applied Surface Science,2015,324:405-413.
参考文献 18
唐仕光,陈泉志,李少波,等.金属复合材料微弧氧化研究进展[J].表面技术,2016,45(11):23-31.TANG S G,CHEN Q Z,LI S B,et al.Research progress of micro-arc oxidation on metal composite[J].Surface Technol-ogy,2016,45(11):23-31(in Chinese).
参考文献 19
LI L H,KONG Y M,KIM H W,et al.Improved biological performance of Ti implants due to surface modification by mi-cro-arc oxidation[J].Biomaterials,2004,25(14):2867-2875.
参考文献 20
HUSSEIN R O,NIE X,NORTHWOOD D O.An investiga-tion of ceramic coating growth mechanisms in plasma electro-lytic oxidation(PEO)processing[J].Electrochimica Acta,2013,112:111-119.
参考文献 21
TEH T H,BERKANI A,MATO S,et al.Initial stages of plasma electrolytic oxidation of titanium[J].Corrosion Sci-ence,2003,45(12):2757-2768.
参考文献 22
ALVES S A,BAYÓN R,IGARTUA A,et al.Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants[J].Lubrication Sci-ence,2013,26(7-8):500-513.
参考文献 23
XIU P,JIA Z,LV J,et al.Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and in-terlocked bone/implant interface[J].ACS Applied Materials & Interfaces,2016,8(28):17964-17975.
参考文献 24
ALVES S A,BAYÓN R,de VITERI V S et al.Tribocorro-sion behavior of calcium-and phosphorous-enriched titanium oxide films and study of osteoblast interactions for dental im-plants[J].Journal of Bio-and Tribo-Corrosion,2015,1(3):23.
参考文献 25
WANG Y,LOU J,ZENG L,et al.Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys [J].Applied Surface Science,2017,412:29-36.
参考文献 26
SHANG W,CHEN B,SHI X,et al.Electrochemical corro-sion behavior of composite MAO/sol-gel coatings on magnesi-um alloy AZ91D using combined micro-arc oxidation and sol-gel technique[J].Journal of Alloys & Compounds,2009,474(1-2):541-545.
参考文献 27
SASIKUMAR Y,INDIRA K,RAJENDRAN N,et al.Sur-face modification methods for titanium and its alloys and their corrosion behavior in biological environment:A review[J].Journal of Bio-and Tribo-Corrosion,2019,5(2):25-36.
参考文献 28
许正波,郎朗.医用钛合金微弧氧化和溶胶凝胶复合膜层的耐蚀性探讨[J].中国医学装备,2019,16(4):48-51.XU Z B,LANG L.Exploration of corrosion resistance of MAO and sol-gel composite film layer of medical titanium al-loys[J].China Medical Equipment,2019,16(4):48-51(in Chinese).
参考文献 29
RAFIEERAD A R,ASHRA M R,MAHMOODIAN R,et al.Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation:A review paper[J].Materials Science and Engineering C,2015,57:397-413.
参考文献 30
WENG W,HAN G,DU P,et al.The effect of citric acid addition on the formation of sol-gel derived hydroxyapatite [J].Materials Chemistry Physics,2002,74(1):92-97.
参考文献 31
ZHAO L C,CUI C X,WANG X,et al.Corrosion resistance and calcium-phosphorus precipitation of micro-arc oxidized-magnesium for biomedical applications[J].Applied Surface Science,2015,330:431-438.
参考文献 32
IOKU K.Tailored bioceramics of calcium phosphates for re-generative medicine[J].Journal of the Ceramic Society of Japan,2010,118(1381):775-783.
参考文献 33
HE D H,WANG P,LIU P,et al.HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy [J].Surface & Coatings Technology,2015,277:203-209.
参考文献 34
DOMÍNGUEZ-TRUJILLO C,PEÓN E,CHICARDI E,et al.Sol-gel deposition of hydroxyapatite coatings on porous ti-tanium for biomedical applications[J].Surface & Coatings Technology,2018,333:158-162.
参考文献 35
GU Y H,ZHENG X H,LIU Q et al.Investigating corrosion performance and corrosive wear behavior of sol-gel/MAO-coa-ted Mg alloy[J].Tribology Letters,2018,66(3):101.
参考文献 36
NIU B,SHI P,SHANSHAN E,et al.Preparation and char-acterization of HA sol-gel coating on MAO coated AZ31 alloy [J].Surface & Coatings Technology,2016,286:42-48.
参考文献 37
ZANCANELA D C,SIMÃO A M S,FRANCISCO C G,et al.Graphene oxide and titanium:synergistic effects on the biomineralization ability of osteoblast cultures[J].Journal of Materials Science Materials in Medicine,2016,27(4):71.
参考文献 38
RAMEZANZADEH B,KARDAR P,BAHLAKEH G,et al.Fabrication of a highly tunable graphene oxide composite through layer-by-layer assembly of highly crystalline polyani-line nanofibers and green corrosion inhibitors:complementaryexperimental and first-principles quantum-mechanics model-ing approaches[J].The Journal of Physical Chemistry C,2017,121(37):20433-20450.
参考文献 39
GUPTA R K,MALVIYA M,VERMA C,et al.Aminoazo-benzene and diaminoazobenzene functionalized graphene ox-ides as novel class of corrosion inhibitors for mild steel:Ex-perimental and DFT studies [J].Materials Chemistry & Physics,2017,198:360-373.
参考文献 40
HE W T,ZHU L Q,CHEN H,et al.Electrophoretic depo-sition of graphene oxide as a corrosion inhibitor for sintered NdFeB[J].Applied Surface Science,2013,279:416-423.
参考文献 41
XUE B,YU M,LIU J,et al.Corrosion protection of AA2024-T3 by sol-gel film modified with graphene oxide [J].Journal of Alloys & Compounds,2017,725:84-95.
参考文献 42
ZUO Y,LI T L,YU P H,et al.Effect of graphene oxide ad-ditive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy[J].Applied Surface Science,2019,480:26-34.
参考文献 43
WEN C,ZhAN X,HUANG X,et al.Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method [J].Surface & Coatings Technology,2017,317:125-133.
参考文献 44
KOKUBO T,TAKADAMA H.How useful is SBF in predic-ting in vivo bone bioactivity?[J].Biomaterials,2006,27(15):2907-2915.
参考文献 45
MATYKINA E,ARRABAL R,BMING O,et al.In vitro corrosion performance of PEO coated Ti and Ti6Al4V used for dental and orthopaedic implants[J].Surface & Coatings Technology,2016,307:1255-1264.
参考文献 46
HONG M H,LEE D H,et al.Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by microarc oxidation[J].Thin Solid Films,2011,519(20):7065-7070.
参考文献 47
ZYWITZKI O,MODES T,SAHM H,et al.Structure and properties of crystalline titanium oxide layers deposited by re-active pulse magnetron sputtering [J].Surface & Coating Technology,2004,180:538-543.
参考文献 48
PARODI M B,RODR’GUEZ L,PAZOS L,et al.Applica-tion of the Berreman effect to the characterization of TiO2 thin layers formed onto titanium substrates[J].Procedia Materi-als Science,2012,1:469-474.
参考文献 49
DA COSTA R C,RODRIGUES A D,CUNHA T R,et al.Raman scattering and phonon anharmonicity as a tool for as-sisting TiO2-based ceramics synthesis[J].Ceramics Interna-tional,2017,43(1):116-120.
参考文献 50
GU Y,CHEN L,YUE W,et al.Corrosion behavior and mechanism of MAO coated Ti6Al4V with a grain-fined sur-face layer[J].Journal of Alloys & Compounds,2016,664:770-776.
参考文献 51
CHEN F,YU P H,ZHANG Y L.Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy[J].Journal of Alloys & Compounds,2017,711:342-348.
参考文献 52
SHOKOUHFAR M,DEHGHANIAN C,MONTAZERI M,et al.Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance:Part II [J].Applied Surface Sci-ence,2012,258(7):2416-2423.
参考文献 53
ZHENG X H,LIU Q,MA H J,et al.Probing local corro-sion performance of sol-gel/MAO composite coating on Mg al-loy[J].Surface & Coatings Technology,2018,347:286-296.
参考文献 54
MANOJ KUMAR R,KUNTAL K K,SINGH S,et al.Elec-trophoretic deposition of hydroxyapatite coating on Mg-3Zn al-loy for orthopaedic application[J].Surface & Coatings Tech-nology,2016,287:82-92.
参考文献 55
IKHE A B,KALE A B,JEONG J,et al.Perfluorinated pol-ysiloxane polysiloxane hybridized with graphene oxide for cor-rosion inhibition of AZ31 magnesium alloy [J].Corrosion Science,2016,109:238-245.
参考文献 56
SU Y,KRAVETS V G,WONG S L,et al.Impermeable bar-rier films and protective coatings based on reduced graphene oxide[J].Nature Communications,2014,5(1):1-5.
参考文献 57
KUMAR S,NARAYANAN T S N S,GANESH SUANDARA RAMAN S,et al.Surface modification of CP-Ti to improve the fretting-corrosion resistance:Thermal oxidation vs.ano-dizing[J].Materials Science & Engineering C,2010,30(6):921-927.
参考文献 58
OLIVEIRA F G,RIBEIROB A R,PEREZ G,et al.Under-standing growth mechanisms and tribocorrosion behaviour of porous TiO2anodic films containing calcium,phosphorousand magnesium[J].Applied Surface Science,2015,341:1-12.
参考文献 59
ZHANG G,XU Y,XIANG X,et al.Tribological perform-ances of highly dispersed graphene oxide derivatives in vege-table oil[J].Tribology International,2018,126:39-48.
参考文献 60
FAZEL M,SALIMIJAZI H R,SHAMANIAN M.Improve-ment of corrosion and tribocorrosion behavior of pure titanium by subzero anodic spark oxidation[J].ACS Applied Materi-als & Interfaces,2018,10(17):15281-15287.
目录contents

    摘要

    为了改善钛合金种植体在体液中的腐蚀及摩擦腐蚀行为,延长其在人体环境中的服役时间,在微弧氧化 (MAO)膜层上采用溶胶凝胶(Sol-gel)法于羟基磷灰石(HA)和氧化石墨烯(GO)的混合溶胶中浸渍提拉成膜,从而在 Ti6Al4V 合金表面成功地制备了 GO/ HA/ MAO 复合膜层。 结果表明,MAO 膜层表面的微孔及微球被 GO/ HA 薄膜有效的覆盖且较为致密;膜层的物相组成主要为金红石相及锐钛矿相的 TiO2、HA、SiO2 和GO;根据电化学腐蚀和摩擦腐蚀结果分析知,GO/ HA/ MAO 复合膜层在模拟体液(SBF)中的耐蚀性及耐摩擦腐蚀性相比于 MAO 膜层和 Ti6Al4V 基体均得到了显著提高。

    Abstract

    To improve the corrosion and tribocorrosion behavior of titanium alloy implants in body fluid and prolong their serv- ice time in human environment, the GO/ HA layer was dipped and drawn into film in the mixed sol of hydroxyapatite (HA) and graphene oxide (GO) by Sol-gel method on the micro-arc oxidation (MAO) coating, and the GO/ HA/ MAO composite coatings was successfully prepared on the surface of Ti6Al4V alloy. The results show the micro-pores/ spheres existed on MAO coating surface is effectively covered by GO/ HA layer and the surface morphologies of the composite coatings become denser compared to the MAO coating without GO/ HA treatment. The prepared composite coating is mainly composed by rutile and anatase TiO2 ,HA, SiO2 and GO. The results of electrochemical corrosion and tribocorrosion test indicate the corrosion and tribocorrosion resist-ance of GO/ HA/ MAO composite coatings in simulated body fluid( SBF) is largely enhanced by the protective GO/ HA layer, compared to the MAO coating and Ti6Al4V substrate.

  • 0 引言

  • 从20 世纪50 年代起,Ti6Al4V(TC4)合金由于其良好的耐蚀性和生物相容性、卓越的机械性能及其在宿主骨组织中良好的骨整合能力等优越性,已逐渐成为应用最为广泛的人工植入物材料之一[1-4]。 从物理化学的角度来看,钛合金在人体内是“惰性”的,因为它会自然地形成一层热力学稳定的氧化钛保护膜(厚1.5~10 nm),该膜层具有较高的粘附性和自我修复性[5-6]。 然而所有的金属植入物(尤其是牙种植体和髋关节等) 在口腔唾液或人体体液内的长期使用过程中都会因磨损、腐蚀,尤其是摩擦腐蚀(磨损和腐蚀的协同作用)等因素而存在某种程度的退化及降解行为[7-9],并且由此而释放的腐蚀产物及磨屑很可能会引起不良的生物学反应,进而导致植入手术失败[10-11]。 此外,钛合金较差的摩擦学性质也会加速其在人体体液环境中的腐蚀[12]。 综上可知,钛合金表面形成的很薄的钝化保护膜层显然不能满足生物医学领域对植入物表面高性能的要求。 因此需对Ti6Al4V合金进行表面处理,提高其在模拟体液中的耐磨性和耐蚀性,以保证其植入物在人体环境中能够长期的服役。

  • 目前,阳极氧化[13]、等离子体喷涂[14]、激光熔覆[15]、电泳沉积[16] 和微弧氧化[17] 等技术已经被广泛地应用于钛和钛合金的表面改性中。 其中,微弧氧化(Micro-arc oxidation, MAO) 又称等离子体电解氧化( Plasma electrolytic oxidation, PEO),是一种将铝、镁、钛、锆等阀金属及其合金置于特定的电解液中,利用微区瞬间高温烧结作用,在其表面原位生长陶瓷膜层的表面处理技术[18-20]。 该技术能够在基体表面以冶金结合的方式形成含有晶体结构为金红石相、锐钛矿相或二者的混合物形式的多孔氧化陶瓷层,有效提高材料的耐蚀性、耐摩擦腐蚀性及生物相容性[21-23], 并且具有操作简单、生产效率高且环境友好等优点,因此得到了很多学者的关注及研究。

  • Alves等[24] 将PEO处理后的纯钛牙种植体置于37℃下的人工唾液中进行摩擦腐蚀试验, 结果表明,经过PEO处理后,纯钛的摩擦腐蚀行为得到了明显改善;Wang等[25] 对植酸中经MAO处理后的Ti6Al4V合金表面的生物性能进行了研究,结果表明,MAO处理后的Ti6Al4V合金的生物相容性得到了较大的提高。

  • 然而经MAO处理后的膜层存在大量的微孔及一定数量的微裂纹,体液当中的腐蚀性离子很容易通过微孔或裂纹的缝隙渗透到膜层的内部甚至基体中,进而导致氧化膜龟裂和脱落。 因此,为了进一步增强钛合金MAO膜层的耐蚀性, 提高其作为种植体在人体中的使用寿命,对其进行后续的封孔处理显得尤为重要。 与其他封孔技术相比,溶胶凝胶法可更好的控制膜层的化学成分和微观结构,能制备出表面均匀、活性较高的薄膜,并因具有成本低、操作简单、环境友好等优点而成为极具发展前景的封孔方法[26-27]。 许正波等[28]采用微弧氧化与溶胶凝胶相结合的两步法对Ti6Al4V合金进行复合处理后发现,微弧氧化膜层表面原先存在的大量微孔完全被覆盖且较为平整,复合膜层的耐蚀性有较大提高。

  • 另一方面,羟基磷灰石(Ca10(PO4)6(OH)2,(Hydroxyapatite, HA)作为一种人体骨骼中主要的无机物质(约占骨组织重量的65%以上[29]),具有良好的生物相容性及生物活性,因而以涂料、粉体或复合材料等形式被广泛应用于钛、镁合金等生物医用材料的表面改性当中[30-32]。 He等[33] 通过电化学沉积的方法在Ti6Al4V合金上成功地制备出了HA膜层。 随后,溶胶凝胶法制备的HA也实现了在多孔钛合金表面的沉积,这个过程利用了钛合金基体的多孔性来提高HA膜层在基体上的粘附[34]。 同时,微弧氧化膜层具有相似的表面孔洞结构,因此也会利于HA膜层的沉积。 Gu等[35] 采用溶胶凝胶法在AZ31 镁合金MAO涂层上成功制备了含有HA的复合膜层。 该复合膜层在37℃ 的模拟体液中,较单一的MAO膜层具有更好的耐蚀性和耐磨性;Niu等[36] 通过溶胶凝胶法在MAO处理后的AZ31 合金表面制备得到了HA膜层,所得的膜层相比于在AZ31 合金上直接沉积的膜层, 在结合强度上具有更佳的表现。

  • 氧化石墨烯(Graphene oxide, GO)是一种富含羟基、羧基和环氧基团的二维碳材料。 近些年,因其强大的机械强度及良好的生物相容性等优异性能,在生物医用领域的性能和应用一直是研究的热点之一。 一些研究结果表明,在钛种植体上GO的存在可以促进生物矿化和骨再生[37]。另有研究表明,氧化石墨烯纳米片可以通过不同的机制(静电、配位键等形式) 吸收其表面的离子、分子或络合物, 并在一定条件下释放它们[38-39]。 因此,GO也被用于各种金属基体的缓蚀剂[40]。 Xue等[41] 在AA2024 铝合金上制备了含有GO的溶胶凝胶膜层。 研究发现,GO的加入显著提高了溶胶凝胶膜的耐蚀性;Zuo等[42] 研究了不同浓度的GO添加剂对Ti6Al4V合金微弧氧化膜层摩擦腐蚀行为的影响,结果表明,GO的加入能够有效地降低膜层的孔隙率及粗糙度,提高表面硬度,并且显著改善钛合金表面MAO膜层的耐蚀性及耐摩擦腐蚀性。

  • 虽然通过溶胶凝胶法在钛合金或改性后的钛合金表面制备HA涂层已被证实能够改善它们的生物相容性和耐蚀性,但将HA和GO通过溶胶凝胶法与钛合金MAO涂层相结合,对MAO多孔陶瓷层进行封孔处理,并对复合膜层在模拟人体体液中的磨损腐蚀行为的研究仍需进一步探索。 因此,文中通过微弧氧化和溶胶凝胶沉积成膜法成功制备了GO/HA/MAO复合膜层,并对其在模拟体液环境下的耐腐蚀性及耐摩擦腐蚀性进行了研究。

  • 1 试验与表征

  • 1.1 MAO膜层的制备

  • 将Ti6Al4V样品(Φ=23 mm,d =4 mm的圆片)依次经过600、800 和1200 号的碳化硅砂纸打磨,并用抛光布抛光至镜面。 然后将抛光后的样品用去离子水和乙醇在超声清洗机中分别超声清洗10 min和15 min,以对其表面进行除尘和脱脂,用吹风机吹干后待用。

  • MAO工艺设备由脉冲直流电源、不锈钢电解槽(可通冷却循环水)及自制的搅拌装置组成,如图1 所示。 Ti6Al4V合金作为阳极,通过钛丝与直流电源正极相连,不锈钢电解槽作为阴极与电源负极相连。 在14 A·dm-2的恒定电流密度下,选定脉冲频率500 Hz、占空比40%、终止电压380 V。 电解液的溶质组成为10 g·L-1的Na2 SiO3和5 g·L-1的KOH。

  • 1.2 Sol-gel/MAO复合膜层的制备

  • 如图2 所示,为了制备HA溶胶,将0.2 molCa( NO3)2·4H2O和0.12 mol亚磷酸三乙酯(P(C2H5O)3)作为前驱体,加入到260 mL的无水乙醇中,然后在60 °C的温度下搅拌6 h,并根据如下反应形成了HA溶胶:

  • 图1 MAO工艺设备示意图

  • Fig.1 Schematic diagram of the MAO process equipment

  • 图2 GO/HA/MAO复合膜层制备的工艺示意图

  • Fig.2 Schematic diagram of the preparation of GO/HA/MAO composite coating

  • 10Ca2++6PO43-+2OH-Ca10PO46(OH)2
    (1)
  • 将得到的溶胶在30 °C下陈化24 h后,再加入0.08 g·L-1的GO,搅拌均匀得到最终浸渍提拉所用的溶胶状态。 因此,能在无水乙醇中形成稳定的溶胶,不仅是由于GO的亲水性及其在HA溶胶中相似相溶性, 而且还有静电斥力的作用[43]。 最后将MAO处理后的样品在制备好的GO/HA溶胶中以2 cm·min-1的速度浸渍和提拉(过程重复6 次)。 将浸渍提拉后的样品在温度为100 °C的烘箱中干燥2 h后,在马弗炉中于500℃下煅烧1 h。 把煅烧后的样品用去离子水和无水乙醇冲洗后烘干,从而得到样品GO/HA/MAO。未添加GO和未经过浸渍提拉处理的两组样品分别作为对照组,并记为HA/MAO和MAO。

  • 1.3 膜层的表征

  • 膜层的微观形貌和元素分布采用场发射扫描电子显微镜( FESEM) 和能谱仪(EDS) 进行检测。 通过Image J 6.0 软件和数字式显微硬度计(HXD-1000TM/LCD型)对膜层的孔隙率及硬度(载荷3 N,加载20 s)进行测量,每组样品均测量3 次并取平均值。 膜层的物相组成由小角掠射角X射线衍射仪( GIXRD, Japan Science D/max-2500PC)在1°掠射角下进行分析。 拉曼光谱采用拉曼光谱仪(Renishaw INVIA Raman spectrometer)在532 nm波长下进行测试。

  • 电化学测试处于的液体环境为37℃ 下的模拟体液(Simulated body fluid, SBF)中,该溶液参考Kokubo等[44] 的研究结果进行配制,其组成及用量见表1。 通过电化学工作站(CS350)对样品在SBF溶液中进行电化学阻抗谱(EIS)和动电位极化曲线测试。 该工作站包含工作电极(1 cm2的有效区域)、铂片对电极和作为参比电极的饱和甘汞电极( SCE),并与超级恒温水浴箱(HH-601)相连,使整个装置处于37℃恒温。 EIS的扫描频率范围为10-2~105 Hz,动电位极化曲线测试的扫描速率为5 mV/s。

  • 表1 SBF溶液中试剂的添加顺序、纯度及用量

  • Table1 Adding order, purity and dosage of reagents in the SBF solution

  • 采用电化学腐蚀摩擦磨损试验仪( MFTEC4000)在37℃ 下的SBF溶液中进行了摩擦腐蚀试验,试验装置如图3 所示。 其中三电极工作站包括:对电极(碳电极)、工作电极(样品)和参比电极(含有饱和KCl溶液的Ag/AgCl电极)。在往复滑动测试中,摩擦副为氧化铝球( 直径6 mm),施加载荷为3 N,滑动频率为0.2 Hz,滑动幅度为3 mm。 测试前,先将试样在37℃ 的SBF溶液中浸泡60 min,以使开路电位( Open circuit potential, OCP) 达到稳定状态;测试期间分为3 个阶段:空载条件下浸泡5 min、往复滑动过程持续进行20 min。

  • 图3 摩擦腐蚀试验装置示意图

  • Fig.3 Schematic diagram of the tribocorrosion test set-up

  • 往复滑动结束后浸泡5 min。 采用激光扫描共聚焦显微镜(VK-X250) 对摩擦腐蚀试验后磨痕的三维形貌进行测量,然后通过VK-X多文件分析软件在三维形貌上截取5 个不同的位置并绘出磨损轨迹的轮廓线,进而计算出磨痕的横截面积,取其平均值。 并根据公式(2)近似得到磨损体积 V:

  • V=S×L
    (2)
  • 式中: V 为磨损体积, S 为横截面积, L 为磨痕长度,取为3 mm。

  • 2 结果与分析

  • 2.1 样品的微观形貌与元素分布

  • 样品MAO、HA/MAO和GO/HA/MAO的表面形貌如图4 所示。 通过图4(a)(d)可知,MAO组样品的表面主要由微弧氧化阶段的放电通道和反复熔融所形成的孔洞和微球状物质组成;通过图4(b)(e)可以发现,对于样品HA/MAO,在MAO样品的表面上继续沉积了一层薄膜,同时局部区域有微裂纹的产生。 这可能是由于在煅烧过程中微弧氧化膜层中残留的热应力释放产生的。 对于样品GO/HA/MAO,由图4( c)( f)可观察到,在MAO膜层的表面上沉积了一层较为致密的薄膜,部分微孔被沉积的薄膜所覆盖,同时,薄膜的表面上可以观察到一些片层物质,对片层物进行EDS检测,结果如图5 所示。 其中碳原子的原子分数较高,所以推测该片层物是氧化石墨烯片层。

  • 图4 MAO、HA/MAO及GO/HA/MAO涂层的表面形貌

  • Fig.4 Surface morphologies of MAO, HA/MAO and GO/HA/MAO coatings

  • 图6 为使用Image J 6.0 软件分析获得的膜层表面的孔隙分布图,并由此计算出各组样品的孔隙率,如图7( a) 所示。 从图中可以看出,膜层表面上的微孔被红色区域较为充分地填充,从填充的结果可以看出,MAO膜层上遍布着大量微孔,而具有一定数量微孔的骨科植入物植入人体后,更利于成骨细胞的吸附、增殖、分化,且可提高骨骼和植入体的机械结合及化学键合[45-46],进而提高骨整合率。 但过多的孔洞往往成为腐蚀性离子进入其内部进行侵蚀的位点,因此会造成生物涂层植入的失效。 而与样品MAO相比, 样品HA/MAO和GO/HA/MAO膜层表面的孔洞被有效的封闭,且孔隙率分别降低至( 5.87%± 0.21%) 和( 4.13%±0.18%)。 图7( b)为不同样品的维氏硬度。 从图中可以看到, Ti6Al4V合金经MAO处理及Sol-gel/MAO复合处理后,膜层的表面硬度均有不同程度的提高。 这与SiO2 及金红石TiO2[47]较高的硬度有关。 此外,复合膜层较致密也是其硬度较高的原因之一[35]

  • 图5 图4(f)中GO/HA/MAO涂层表面所选点处的EDS能谱分析

  • Fig.5 EDS analysis of selected point on surface of the GO/HA/MAO coating in figure 4(f)

  • 图8 为样品MAO与GO/HA/MAO的截面形貌。 从图8(a)可以看出,MAO膜层与钛合金基体具有较好的结合强度,膜层厚度约为4 μm。由图8( b) 可见, GO/HA/MAO的膜层厚度与MAO膜层厚度相接近,且Sol-gel膜与MAO膜层形成了较为紧密的结合。 此外,因GO/HA膜有效的封闭了MAO膜层的微孔, 因此GO/HA/MAO复合膜层更为致密均匀。

  • 样品GO/HA/MAO的能谱面扫描结果如图9 所示。 结果表明,样品GO/HA/MAO的表面主要由O、Ti、Si、C、Ca和P元素组成,其中O、Ti和Si元素含量较多,Ca和P对应于羟基磷灰石( Ca10( PO4) 6( OH) 2) 中的Ca和P, C元素对应于GO中的C元素。 但Ca、P和C元素的含量较少,这可能是由于GO/HA膜层较薄所致。

  • 图6 MAO、HA/MAO及GO/HA/MAO涂层的表面形貌和孔隙分布

  • Fig.6 Surface morphologoies and pore distribution of MAO, HA/MAO and GO/HA/MAO coatings

  • 图7 MAO、HA/MAO及GO/HA/MAO涂层的孔隙率和维氏硬度

  • Fig.7 Porosity and Vickers hardness of MAO, HA/MAO and GO/HA/MAO coatings

  • 图8 MAO膜层和GO/HA/MAO膜层的截面形貌

  • Fig.8 Cross-section morphologies of MAO coating and GO/HA/MAO coating

  • 图9 GO/HA/MAO涂层的元素分布

  • Fig.9 Element distribution of the GO/HA/MAO coating

  • 2.2 样品表面的物相

  • 图10 是样品MAO、 HA/MAO和GO/HA/MAO的GIXRD图谱,通过比对PDF卡片得到,样品MAO的表面主要由金红石(Rutile) TiO2(卡号:75-1748, 73-1765)、锐钛矿(Anatase) TiO2(71-1166)和SiO2(86-1563)相组成;样品HA/MAO和GO/HA/MAO的表面组成均为金红石TiO2、锐钛矿TiO2、SiO2 和羟基磷灰石(HA)(09-0432)。 这与EDS能谱扫描得到的结果相印证。钛合金在微弧氧化过程中伴随着极其复杂的化学、电化学及等离子体反应等,在样品周围形成了局部高温区域。 在此期间,阳极的钛合金会失去电子,生成的Ti4+会与OH-反应,再经热分解得到TiO2;同时,电解液中大量的SiO32-会发生水解反应,且因该反应为吸热反应,故在局部高温的作用下, 水解平衡会正向移动, 生成更多的H2 SiO3,而H2 SiO3 在高温下又容易分解为SiO2,并通过样品被高压反复击穿形成的放电通道参与到膜层的形成中。 其中发生的反应如下:

  • Ti-4e-Ti4+
    (3)
  • Ti4++4OH-TiO2+2H2O
    (4)
  • SiO32-+2H2O2OH-+H2SiO3
    (5)
  • H2SiO3SiO2+H2O
    (6)
  • 此外,从GIXRD谱图中可以看出,样品HA/MAO和GO/HA/MAO与样品MAO相比,锐钛矿TiO2 的相对含量都有少量的增加,这是因为在马弗炉中,500℃煅烧的过程有利于非晶态TiO2 向锐钛矿TiO2 的转变[48]

  • 图10 MAO、HA/MAO和GO/HA/MAO膜层的GIXRD图谱

  • Fig.10 GIXRD spectra of MAO、HA/MAO and GO/HA/MAO coatings

  • 2.3 拉曼光谱分析

  • 图11 是MAO、HA/MAO和GO/HA/MAO的拉曼图谱。 其中149、510 和635 cm-1 波长处的峰代表锐钛矿TiO2[49];447 cm-1 波长处的峰代表金红石TiO2; 963.1 cm-1 处的峰对应于HA;800 cm-1 和1080 cm-1 处的峰代表SiO2;1357.3 cm-1 和1585.8 cm-1 处的峰分别对应于GO的D峰和G峰。 由此证明GO存在于GO/HA/MAO的复合膜层中。 同时样品GO/HA/MAO在149 cm-1 处的峰面积相对增大也说明了锐钛矿TiO2 的增加,即煅烧过程促进了非晶态TiO2 向锐钛矿TiO2 的转变。 该结果与GIXRD的分析结果一致。

  • 图11 MAO、HA/MAO和GO/HA/MAO膜层的拉曼图谱

  • Fig.11 Raman spectra of MAO, HA/MAO and GO/HA/MAO coatings

  • 2.4 电化学腐蚀性能

  • 2.4.1 电化学阻抗谱分析

  • 样品Ti6Al4V、MAO、HA/MAO和GO/HA/MAO的EIS测试结果如图12 所示。 从Bode阻抗图可以看出, MAO、HA/MAO和GO/HA/MAO在低频区的阻抗模值相比于基体Ti6Al4V均有一定程度的提高,其中样品GO/HA/MAO提高的最明显,说明MAO膜层、HA/MAO及GO/HA/MAO复合膜层在SBF溶液中都会给予Ti6Al4V基体有效的防护,并且GO/HA/MAO复合膜层的抗模拟体液腐蚀性能最好[50]

  • 图12 Ti6Al4V、MAO、HA/MAO和GO/HA/MAO的EIS结果

  • Fig.12 EIS results of Ti6Al4V, MAO, HA/MAO and GO/HA/MAO

  • 为了进一步研究样品在SBF溶液中的腐蚀性为, 对Ti6Al4V、 MAO、 HA/MAO和GO/HA/MAO分别进行了模拟等效电路,以对EIS数据进行拟合(图13)。 在样品Ti6Al4V的拟合等效电路中, R s 代表溶液电阻; R pC p 分别代表Ti6Al4V表面钝化膜的电阻和钝化膜表面的空隙对应的容抗;R ctC dl 分别表示电荷转移电阻和双电层容抗[51]。 在MAO的等效电路中,R mC m 分别表示MAO膜层的电阻和膜层孔洞对应的容抗。 在HA/MAO和GO/HA/MAO的等效电路中,R hC h 分别代表HA膜层或HA/GO膜层的电阻和膜层孔洞对应的容抗。

  • 等效电路的拟合参数如表2 所示。 在样品Ti6Al4V的等效电路参数中,R pR ct 值都比较小,说明样品Ti6Al4V在SBF溶液中形成的钝化膜较薄,并且该钝化膜对Ti6Al4V在SBF溶液中的抗腐蚀作用很小。 与基体相比,MAO等效电路中,较大的 R mR ct 说明了MAO膜层能够有效的阻碍SBF溶液中腐蚀离子与Ti6Al4V基体的接触。 与MAO相比, HA/MAO和GO/HA/MAO等效电路中,较大的 R hR ct 说明了HA和HA/GO膜层都较厚且致密, 而 R m 值相比于样品MAO,均增加了一个数量级,说明HA和HA/GO膜层在沉积于MAO膜层表面的过程中,有部分HA或GO/HA复合物进入MAO的孔洞中。 GO/HA/MAO与HA/MAO等效电路中的参数相比较,发现 R m 值增加较为明显,R h 值相对降低较少,说明GO/HA相比于HA溶胶,更利于进入MAO膜层的孔洞中。 这可能是因为在GO加入后,由于产生了静电斥力,GO/HA溶胶的状态更加稳定[43]。 另外也说明GO/HA/MAO在SBF溶液中表现出了更好的耐蚀性。

  • 图13 Ti6Al4V、 MAO、 HA/MAO和GO/HA/MAO的EIS结果

  • Fig.13 EIS results of Ti6Al4V, MAO, HA/MAO and GO/HA/MAO

  • 表2 在SBF溶液中所有样品的EIS图的拟合结果

  • Table2 Fitting results of EIS for samples in SBF solution

  • 2.4.2 动电位极化曲线分析

  • 图14 为样品Ti6Al4V、 MAO、 HA/MAO及GO/HA/MAO在SBF溶液中测得的动电位极化曲线,样品的自腐蚀电位(Ecorr )、自腐蚀电流密度(Icorr )和阳极/阴极斜率(分别为 βaβb) 通过Tafel直线外推法获得,并利用Stern-Geary方程(式( 7))[52] 计算得到了各组样品的极化电阻(Rp),相应的Tafel数据列于表3。

  • Rp=βa×βb2.303×Icorr ×βa+βb
    (7)
  • 从表3 可以看出,MAO膜层相比于Ti6Al4V基体具有更高的自腐蚀电位(0.29 V)和更低的自腐蚀电流密度(4.99×10-8A·cm-2),且自腐蚀电流密度相比于Ti6Al4V基体降低了一个数量级,这表明样品MAO经微弧氧化处理后具有更低的腐蚀倾向及自腐蚀速率[53]。 此外,复合膜层HA/MAO及GO/HA/MAO的自腐蚀电位相比于MAO膜层分别提高了0.19 V和0.32 V,自腐蚀电流密度相比于MAO膜层分别降低了2.30 ×10-8 A·cm-2和3.37×10-8 A·cm-2,这表明Sol-gel/MAO复合处理提高了膜层的耐蚀性,且GO/HA/MAO膜层的耐蚀性最好。

  • 图14 Ti6Al4V、MAO、HA/MAO和GO/HA/MAO的动电位极化曲线

  • Fig.14 Potentiodynamic polarization curves of Ti6Al4V,MAO, HA/MAO and GO/HA/MAO

  • 通过比较Ti6Al4V基体、MAO及GO/HA/MAO这3 种样品的极化电阻值 R p,可以发现,GO/HA/MAO膜层的 R p 值(1.09×106 Ω·cm2)相比于MAO膜层(5.32×105Ω·cm2)和Ti6Al4V基体(8.24×104 Ω·cm2)分别提高了一个数量级和两个数量级,且极化电阻的变化趋势与EIS分析中的耐腐蚀性变化一致。 这一方面是由于HA是一种惰性生物陶瓷,具有良好的耐腐蚀性[54],且溶胶凝胶膜层封闭了MAO膜层的大部分孔隙,因此HA/MAO复合膜层的耐蚀性高于MAO膜层。 另一方面,由于GO具有独特的阻隔性能,且其表面大量的含氧基团与金属表面的氧化物具有很强的附着力[55-56],因此,GO/HA/MAO复合膜层表现出良好的耐蚀性。

  • 表3 Ti6Al4V、MAO、HA/MAO和GO/HA/MAO在SBF溶液中的电化学参数

  • Table3 Electrochemical parameters of Ti6Al4V, MAO, HA/MAO and GO/HA/MAO in SBF solution

  • 2.5 摩擦腐蚀性能

  • 摩擦腐蚀试验期间,不同试样的开路电位(OCP)随时间的变化情况如图15( a) 所示。 从图中可以看出,Ti6Al4V、MAO、HA/MAO和GO/HA/MAO 4 种样品于前5 min的浸泡阶段中,开路电位稳定在不同的值: OCPTi6Al4V< OCP MAO<OCP HA/MAO<OCP GO/HA/MAO,且在往复滑动摩擦前后其大小顺序保持一致。 而开路电位的变化值代表试样在测试过程中的腐蚀倾向[22],因此,在经Sol-gel/MAO的复合处理后,膜层的腐蚀倾向较MAO膜层及Ti6Al4V基体明显降低,且GO/HA/MAO的腐蚀倾向最低,这与动电位极化曲线的分析结果一致。

  • 图15 摩擦腐蚀试验中不同试样的开路电位及摩擦因数

  • Fig.15 Open circuit potential and friction coefficient forthe different specimens during tribocorrosion experiments

  • 在往复滑动开始时,Ti6Al4V合金的开路电位约从-0.045 V迅速下降,这是钛合金表面自然形成的钝化膜瞬间被破坏造成的;之后开路电位在-0.1~-0.25 V发生持续波动,这与滑动过程中通过机械作用去除钝化膜(去钝化)及电化学氧化形成钝化膜(再钝化) 之间的动态平衡有关[57];滑动结束时,开路电位再次回升到初始值,这是膜层发生了再钝化现象。 同时,钛合金基体的开路电位始终保持负值,说明有较高的腐蚀倾向。 MAO膜层的开路电位在往复滑动开始后缓慢下降,在滑动终止后又有略微回升,且由于氧化陶瓷层的保护作用,故整个过程中开路电位值均高于钛合金基体的开路电位值,这也说明在摩擦腐蚀过程中,微弧氧化陶瓷层没有被完全去除,Alves等[24] 和Oliveira等[58] 也报道了类似情况。HA/MAO膜层的开路电位亦呈现缓慢下降趋势,在约14 min时出现了一个较小波动,这可归因于产生的磨屑。 GO/HA/MAO的开路电位在摩擦过程中略有缓慢下降的趋势,但保持相对稳定。 摩擦因数随时间的变化情况如图15(b)所示。

  • 在开始滑动后,Ti6Al4V基体的摩擦因数迅速增大,之后平均在0.4 附近波动,其总体的摩擦因数相对较低;MAO摩擦因数相对较大,平均值在0.7,其整体呈上升趋势; HA/MAO和GO/HA/MAO的摩擦因数波动的幅度较小,平均值分别在0.5 和0.4 左右。 而不同样品在滑动过程中摩擦因数变化差异与膜层的表面形貌、膜层厚度、化学成分及晶体结构等因素密切相关。 MAO膜层表面由于存在大量微孔及微球,在往复滑动中粗糙多孔的疏松层被持续磨损,故其摩擦因数逐渐升高,且一直保持相对较高的值; HA/MAO膜层表面较为致密,孔隙率较MAO膜层显著降低,因此其摩擦因数相对较小。 GO/HA/MAO膜层的摩擦因数在20 min之前稳定在0.4 左右,20 min后缓慢增加,在整个滑动过程中该组样品的摩擦因数均较低,且波动范围较小,这与其较为平整致密的表面及氧化石墨烯的润滑作用有关[59]

  • 图16 为磨痕表面的二维、三维形貌及磨痕剖面的轮廓曲线, 从图中可以看出,MAO膜层及Sol-gel/MAO复合膜层的磨痕表面均存在未被磨掉的陶瓷层,故在该摩擦条件下膜层并未完全被磨穿。 此外,Sol-gel/MAO复合膜层的磨痕宽度及深度均小于MAO膜层及Ti6Al4V基体。Ti6Al4V合金的磨痕表面存在经磨损腐蚀后形成的典型犁沟形貌,且宽度及深度都明显高于其他样品,表明其磨损主要为犁削磨损。 MAO膜层的磨痕表面没有明显的分层,且可观察到膜层的表面发生了部分剥落;在磨损轨迹上可以观察到部分平行于摩擦方向的划痕,且在表面的凹陷部分存在一些摩擦产生的颗粒物,故其主要的磨损机制为磨粒磨损。 膜层剥离的产生可归因于对磨球对MAO膜层的摩擦和冲击振动。 HA/MAO及GO/HA/MAO膜层的磨痕表面较为平整,部分呈“鳞片”状,这是由于疲劳裂纹在磨损轨迹中的扩展所致,因此,主要的磨损机制为疲劳磨损[60]。此外,GO/HA/MAO膜层的磨痕形貌较HA/MAO膜层更为平滑。

  • 图16 不同样品经摩擦腐蚀后磨痕的二维、三维图像及磨痕轮廓曲线

  • Fig.16 Surface morphologies and 3D images of wear scars and profiles of the wear tracks of different specimens after tribocorrosion

  • 根据三维形貌得到磨痕剖面的横截面积,并计算出不同样品的磨损体积,如表4 所示。 由表4 可知,Ti6Al4V合金的磨损量最大,这意味着其具有较差的摩擦学性能;而经表面改性后样品的耐磨性得到了不同程度的改善,其中GO/HA/MAO的磨损量最小,说明该组样品具有最好的耐磨性。 有研究表明,金红石TiO2 与基体有良好的结合力, 对膜层摩擦学性能的提高有重要影响[58]。 此外,较为致密的表面形貌、较高的表面硬度和较低的孔隙率以及GO的润滑作用也是GO/HA/MAO复合膜层耐磨性增强的因素。

  • 表4 摩擦腐蚀试验后各样品的磨损体积

  • Table4 Wear volumes of each sample after tribocorrosion tests

  • 3 结论

  • (1) 采用溶胶凝胶技术在MAO膜层上成功地沉积了一层较为致密的GO/HA薄膜,并且部分孔洞被该薄膜封闭,复合膜层的孔隙率显著降低。

  • (2) 通过在SBF溶液中测试得到的电化学阻抗谱和动电位极化曲线数据分析,可以确认不同样品的耐蚀性排序为: GO/HA/MAO> HA/MAO>MAO>Ti6Al4V。 故Sol-gel/MAO复合膜层具有优异的耐蚀性能。

  • (3) 经摩擦腐蚀试验分析,溶胶凝胶法有效地改善了MAO膜层在SBF溶液中的耐摩擦腐蚀性并且HA和GO对膜层耐摩擦腐蚀性能的改善有重要影响。

  • 参考文献

    • [1] GEETHA M,SINGH A K,ASOKAMANI R,et al.Ti based biomaterials,the ultimate choice for orthopaedic implants-a review[J].Progress in Materials Science,2009,54(3):397-425.

    • [2] SIDAMBE A.Biocompatibility of advanced manufactured ti-tanium implants-a review[J].Materials(Basel),2014,7(12):8168-8188.

    • [3] NIINOMI M.Mechanical biocompatibilities of titanium alloys for biomedical applications [J].Mechanical Behavior Bio-medical Materials,2008,1(1):30-42.

    • [4] GONZALEZ E D,AFONSO C R M,NASCENTE P A P.Influence of Nb content on the structure,morphology,nano-structure,and properties of titanium-niobium magnetron sput-ter deposited coatings for biomedical applications[J].Surface & Coatings Technology,2017,326(15):424-428.

    • [5] LARA RODRIGUEZ L,SUNDARAM P A,ROSIM-FACHI-NI E,et al.Plasma electrolytic oxidation coatings on γ-TiAl alloy for potential biomedical applications [J].Biomedical Materials Research Part B,Applied Biomaterials,2014,102(5):988-1001.

    • [6] AGUILERA-CORREA J J,AUÑÓNÁ,BOIZA-SÁNCHEZ M,et al.Urine aluminum concentration as a possible implant biomarker of pseudomonas aeruginosa infection using a fluo-rine-and phosphorus-doped Ti-6Al-4V alloy with osseointe-gration capacity[J].ACS Omega,2019,4(7):11815-11823.

    • [7] SOTO-ALVAREDO J,BLANCO E,BETTMER J,et al.E-valuation of the biological effect of Ti generated debris from metal implants:ions and nanoparticles[J].Metallomics:In-tegrated Biometal Science,2014,6(9):1702-1708.

    • [8] SOUZA J C M,HENRIQUES M,TEUGHELS W,et al.Wear and corrosion interactions on titanium in oral environ-ment:literature review[J].Journal of Bio-and Tribo-Corro-sion,2015,1(2):1-13.

    • [9] MOHSENI E,ZALNEZHAD E,BUSHROA A R,et al.Ti/TiN/HA coating on Ti-6Al-4V for biomedical applications[J].Ceramics International,2015,41(10):14447-14457.

    • [10] MOHEDANO M,MATYKINA E,ARRABAL R,et al.Met-al release from ceramic coatings for dental implants [J].Dental Materials,2014,30(3):28-40.

    • [11] FAZEL M,SALIMIJAZI H R,GOLOZAR M A,et al.A comparison of corrosion,tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process [J].Applied Surface Science,2015,324:751-756.

    • [12] RUNA M J,MATHEW M T,ROCHA L A.Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems[J].Tribology International,2013,68:85-93.

    • [13] YU Y S,XIE L S,CHEN M H,et al.Surface characteris-tics and adhesive strength to epoxy of three different types of titanium alloys anodized in NaTESi electrolyte[J].Surface & Coatings Technology,2015,280:122-128.

    • [14] ZHANG F,HE J,CHEN K,et al.Microstructure evolution and mechanical properties of TiCN-Cr nano/micro composite coatings prepared by reactive plasma spraying[J].Applied Surface Science,2017,427:905-914.

    • [15] WENG F,CHEN C Z,YU H,et al.Research status of laser cladding on titanium and its alloys:A review[J].Materials & Design,2014,58:412-425.

    • [16] GAO A,HANG R,BAI L,et al.Electrochemical surface engineering of titanium-based alloys for biomedical applica-tion[J].Electrochimica Acta,2018,271:699-718.

    • [17] WANG J H,WANG J,LU Y,et al.Effects of single pulse energy on the properties of ceramic coating prepared by mi-cro-arc oxidation on Ti alloy[J].Applied Surface Science,2015,324:405-413.

    • [18] 唐仕光,陈泉志,李少波,等.金属复合材料微弧氧化研究进展[J].表面技术,2016,45(11):23-31.TANG S G,CHEN Q Z,LI S B,et al.Research progress of micro-arc oxidation on metal composite[J].Surface Technol-ogy,2016,45(11):23-31(in Chinese).

    • [19] LI L H,KONG Y M,KIM H W,et al.Improved biological performance of Ti implants due to surface modification by mi-cro-arc oxidation[J].Biomaterials,2004,25(14):2867-2875.

    • [20] HUSSEIN R O,NIE X,NORTHWOOD D O.An investiga-tion of ceramic coating growth mechanisms in plasma electro-lytic oxidation(PEO)processing[J].Electrochimica Acta,2013,112:111-119.

    • [21] TEH T H,BERKANI A,MATO S,et al.Initial stages of plasma electrolytic oxidation of titanium[J].Corrosion Sci-ence,2003,45(12):2757-2768.

    • [22] ALVES S A,BAYÓN R,IGARTUA A,et al.Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants[J].Lubrication Sci-ence,2013,26(7-8):500-513.

    • [23] XIU P,JIA Z,LV J,et al.Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and in-terlocked bone/implant interface[J].ACS Applied Materials & Interfaces,2016,8(28):17964-17975.

    • [24] ALVES S A,BAYÓN R,de VITERI V S et al.Tribocorro-sion behavior of calcium-and phosphorous-enriched titanium oxide films and study of osteoblast interactions for dental im-plants[J].Journal of Bio-and Tribo-Corrosion,2015,1(3):23.

    • [25] WANG Y,LOU J,ZENG L,et al.Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys [J].Applied Surface Science,2017,412:29-36.

    • [26] SHANG W,CHEN B,SHI X,et al.Electrochemical corro-sion behavior of composite MAO/sol-gel coatings on magnesi-um alloy AZ91D using combined micro-arc oxidation and sol-gel technique[J].Journal of Alloys & Compounds,2009,474(1-2):541-545.

    • [27] SASIKUMAR Y,INDIRA K,RAJENDRAN N,et al.Sur-face modification methods for titanium and its alloys and their corrosion behavior in biological environment:A review[J].Journal of Bio-and Tribo-Corrosion,2019,5(2):25-36.

    • [28] 许正波,郎朗.医用钛合金微弧氧化和溶胶凝胶复合膜层的耐蚀性探讨[J].中国医学装备,2019,16(4):48-51.XU Z B,LANG L.Exploration of corrosion resistance of MAO and sol-gel composite film layer of medical titanium al-loys[J].China Medical Equipment,2019,16(4):48-51(in Chinese).

    • [29] RAFIEERAD A R,ASHRA M R,MAHMOODIAN R,et al.Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation:A review paper[J].Materials Science and Engineering C,2015,57:397-413.

    • [30] WENG W,HAN G,DU P,et al.The effect of citric acid addition on the formation of sol-gel derived hydroxyapatite [J].Materials Chemistry Physics,2002,74(1):92-97.

    • [31] ZHAO L C,CUI C X,WANG X,et al.Corrosion resistance and calcium-phosphorus precipitation of micro-arc oxidized-magnesium for biomedical applications[J].Applied Surface Science,2015,330:431-438.

    • [32] IOKU K.Tailored bioceramics of calcium phosphates for re-generative medicine[J].Journal of the Ceramic Society of Japan,2010,118(1381):775-783.

    • [33] HE D H,WANG P,LIU P,et al.HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy [J].Surface & Coatings Technology,2015,277:203-209.

    • [34] DOMÍNGUEZ-TRUJILLO C,PEÓN E,CHICARDI E,et al.Sol-gel deposition of hydroxyapatite coatings on porous ti-tanium for biomedical applications[J].Surface & Coatings Technology,2018,333:158-162.

    • [35] GU Y H,ZHENG X H,LIU Q et al.Investigating corrosion performance and corrosive wear behavior of sol-gel/MAO-coa-ted Mg alloy[J].Tribology Letters,2018,66(3):101.

    • [36] NIU B,SHI P,SHANSHAN E,et al.Preparation and char-acterization of HA sol-gel coating on MAO coated AZ31 alloy [J].Surface & Coatings Technology,2016,286:42-48.

    • [37] ZANCANELA D C,SIMÃO A M S,FRANCISCO C G,et al.Graphene oxide and titanium:synergistic effects on the biomineralization ability of osteoblast cultures[J].Journal of Materials Science Materials in Medicine,2016,27(4):71.

    • [38] RAMEZANZADEH B,KARDAR P,BAHLAKEH G,et al.Fabrication of a highly tunable graphene oxide composite through layer-by-layer assembly of highly crystalline polyani-line nanofibers and green corrosion inhibitors:complementaryexperimental and first-principles quantum-mechanics model-ing approaches[J].The Journal of Physical Chemistry C,2017,121(37):20433-20450.

    • [39] GUPTA R K,MALVIYA M,VERMA C,et al.Aminoazo-benzene and diaminoazobenzene functionalized graphene ox-ides as novel class of corrosion inhibitors for mild steel:Ex-perimental and DFT studies [J].Materials Chemistry & Physics,2017,198:360-373.

    • [40] HE W T,ZHU L Q,CHEN H,et al.Electrophoretic depo-sition of graphene oxide as a corrosion inhibitor for sintered NdFeB[J].Applied Surface Science,2013,279:416-423.

    • [41] XUE B,YU M,LIU J,et al.Corrosion protection of AA2024-T3 by sol-gel film modified with graphene oxide [J].Journal of Alloys & Compounds,2017,725:84-95.

    • [42] ZUO Y,LI T L,YU P H,et al.Effect of graphene oxide ad-ditive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy[J].Applied Surface Science,2019,480:26-34.

    • [43] WEN C,ZhAN X,HUANG X,et al.Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method [J].Surface & Coatings Technology,2017,317:125-133.

    • [44] KOKUBO T,TAKADAMA H.How useful is SBF in predic-ting in vivo bone bioactivity?[J].Biomaterials,2006,27(15):2907-2915.

    • [45] MATYKINA E,ARRABAL R,BMING O,et al.In vitro corrosion performance of PEO coated Ti and Ti6Al4V used for dental and orthopaedic implants[J].Surface & Coatings Technology,2016,307:1255-1264.

    • [46] HONG M H,LEE D H,et al.Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by microarc oxidation[J].Thin Solid Films,2011,519(20):7065-7070.

    • [47] ZYWITZKI O,MODES T,SAHM H,et al.Structure and properties of crystalline titanium oxide layers deposited by re-active pulse magnetron sputtering [J].Surface & Coating Technology,2004,180:538-543.

    • [48] PARODI M B,RODR’GUEZ L,PAZOS L,et al.Applica-tion of the Berreman effect to the characterization of TiO2 thin layers formed onto titanium substrates[J].Procedia Materi-als Science,2012,1:469-474.

    • [49] DA COSTA R C,RODRIGUES A D,CUNHA T R,et al.Raman scattering and phonon anharmonicity as a tool for as-sisting TiO2-based ceramics synthesis[J].Ceramics Interna-tional,2017,43(1):116-120.

    • [50] GU Y,CHEN L,YUE W,et al.Corrosion behavior and mechanism of MAO coated Ti6Al4V with a grain-fined sur-face layer[J].Journal of Alloys & Compounds,2016,664:770-776.

    • [51] CHEN F,YU P H,ZHANG Y L.Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy[J].Journal of Alloys & Compounds,2017,711:342-348.

    • [52] SHOKOUHFAR M,DEHGHANIAN C,MONTAZERI M,et al.Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance:Part II [J].Applied Surface Sci-ence,2012,258(7):2416-2423.

    • [53] ZHENG X H,LIU Q,MA H J,et al.Probing local corro-sion performance of sol-gel/MAO composite coating on Mg al-loy[J].Surface & Coatings Technology,2018,347:286-296.

    • [54] MANOJ KUMAR R,KUNTAL K K,SINGH S,et al.Elec-trophoretic deposition of hydroxyapatite coating on Mg-3Zn al-loy for orthopaedic application[J].Surface & Coatings Tech-nology,2016,287:82-92.

    • [55] IKHE A B,KALE A B,JEONG J,et al.Perfluorinated pol-ysiloxane polysiloxane hybridized with graphene oxide for cor-rosion inhibition of AZ31 magnesium alloy [J].Corrosion Science,2016,109:238-245.

    • [56] SU Y,KRAVETS V G,WONG S L,et al.Impermeable bar-rier films and protective coatings based on reduced graphene oxide[J].Nature Communications,2014,5(1):1-5.

    • [57] KUMAR S,NARAYANAN T S N S,GANESH SUANDARA RAMAN S,et al.Surface modification of CP-Ti to improve the fretting-corrosion resistance:Thermal oxidation vs.ano-dizing[J].Materials Science & Engineering C,2010,30(6):921-927.

    • [58] OLIVEIRA F G,RIBEIROB A R,PEREZ G,et al.Under-standing growth mechanisms and tribocorrosion behaviour of porous TiO2anodic films containing calcium,phosphorousand magnesium[J].Applied Surface Science,2015,341:1-12.

    • [59] ZHANG G,XU Y,XIANG X,et al.Tribological perform-ances of highly dispersed graphene oxide derivatives in vege-table oil[J].Tribology International,2018,126:39-48.

    • [60] FAZEL M,SALIMIJAZI H R,SHAMANIAN M.Improve-ment of corrosion and tribocorrosion behavior of pure titanium by subzero anodic spark oxidation[J].ACS Applied Materi-als & Interfaces,2018,10(17):15281-15287.

  • 参考文献

    • [1] GEETHA M,SINGH A K,ASOKAMANI R,et al.Ti based biomaterials,the ultimate choice for orthopaedic implants-a review[J].Progress in Materials Science,2009,54(3):397-425.

    • [2] SIDAMBE A.Biocompatibility of advanced manufactured ti-tanium implants-a review[J].Materials(Basel),2014,7(12):8168-8188.

    • [3] NIINOMI M.Mechanical biocompatibilities of titanium alloys for biomedical applications [J].Mechanical Behavior Bio-medical Materials,2008,1(1):30-42.

    • [4] GONZALEZ E D,AFONSO C R M,NASCENTE P A P.Influence of Nb content on the structure,morphology,nano-structure,and properties of titanium-niobium magnetron sput-ter deposited coatings for biomedical applications[J].Surface & Coatings Technology,2017,326(15):424-428.

    • [5] LARA RODRIGUEZ L,SUNDARAM P A,ROSIM-FACHI-NI E,et al.Plasma electrolytic oxidation coatings on γ-TiAl alloy for potential biomedical applications [J].Biomedical Materials Research Part B,Applied Biomaterials,2014,102(5):988-1001.

    • [6] AGUILERA-CORREA J J,AUÑÓNÁ,BOIZA-SÁNCHEZ M,et al.Urine aluminum concentration as a possible implant biomarker of pseudomonas aeruginosa infection using a fluo-rine-and phosphorus-doped Ti-6Al-4V alloy with osseointe-gration capacity[J].ACS Omega,2019,4(7):11815-11823.

    • [7] SOTO-ALVAREDO J,BLANCO E,BETTMER J,et al.E-valuation of the biological effect of Ti generated debris from metal implants:ions and nanoparticles[J].Metallomics:In-tegrated Biometal Science,2014,6(9):1702-1708.

    • [8] SOUZA J C M,HENRIQUES M,TEUGHELS W,et al.Wear and corrosion interactions on titanium in oral environ-ment:literature review[J].Journal of Bio-and Tribo-Corro-sion,2015,1(2):1-13.

    • [9] MOHSENI E,ZALNEZHAD E,BUSHROA A R,et al.Ti/TiN/HA coating on Ti-6Al-4V for biomedical applications[J].Ceramics International,2015,41(10):14447-14457.

    • [10] MOHEDANO M,MATYKINA E,ARRABAL R,et al.Met-al release from ceramic coatings for dental implants [J].Dental Materials,2014,30(3):28-40.

    • [11] FAZEL M,SALIMIJAZI H R,GOLOZAR M A,et al.A comparison of corrosion,tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process [J].Applied Surface Science,2015,324:751-756.

    • [12] RUNA M J,MATHEW M T,ROCHA L A.Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems[J].Tribology International,2013,68:85-93.

    • [13] YU Y S,XIE L S,CHEN M H,et al.Surface characteris-tics and adhesive strength to epoxy of three different types of titanium alloys anodized in NaTESi electrolyte[J].Surface & Coatings Technology,2015,280:122-128.

    • [14] ZHANG F,HE J,CHEN K,et al.Microstructure evolution and mechanical properties of TiCN-Cr nano/micro composite coatings prepared by reactive plasma spraying[J].Applied Surface Science,2017,427:905-914.

    • [15] WENG F,CHEN C Z,YU H,et al.Research status of laser cladding on titanium and its alloys:A review[J].Materials & Design,2014,58:412-425.

    • [16] GAO A,HANG R,BAI L,et al.Electrochemical surface engineering of titanium-based alloys for biomedical applica-tion[J].Electrochimica Acta,2018,271:699-718.

    • [17] WANG J H,WANG J,LU Y,et al.Effects of single pulse energy on the properties of ceramic coating prepared by mi-cro-arc oxidation on Ti alloy[J].Applied Surface Science,2015,324:405-413.

    • [18] 唐仕光,陈泉志,李少波,等.金属复合材料微弧氧化研究进展[J].表面技术,2016,45(11):23-31.TANG S G,CHEN Q Z,LI S B,et al.Research progress of micro-arc oxidation on metal composite[J].Surface Technol-ogy,2016,45(11):23-31(in Chinese).

    • [19] LI L H,KONG Y M,KIM H W,et al.Improved biological performance of Ti implants due to surface modification by mi-cro-arc oxidation[J].Biomaterials,2004,25(14):2867-2875.

    • [20] HUSSEIN R O,NIE X,NORTHWOOD D O.An investiga-tion of ceramic coating growth mechanisms in plasma electro-lytic oxidation(PEO)processing[J].Electrochimica Acta,2013,112:111-119.

    • [21] TEH T H,BERKANI A,MATO S,et al.Initial stages of plasma electrolytic oxidation of titanium[J].Corrosion Sci-ence,2003,45(12):2757-2768.

    • [22] ALVES S A,BAYÓN R,IGARTUA A,et al.Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants[J].Lubrication Sci-ence,2013,26(7-8):500-513.

    • [23] XIU P,JIA Z,LV J,et al.Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and in-terlocked bone/implant interface[J].ACS Applied Materials & Interfaces,2016,8(28):17964-17975.

    • [24] ALVES S A,BAYÓN R,de VITERI V S et al.Tribocorro-sion behavior of calcium-and phosphorous-enriched titanium oxide films and study of osteoblast interactions for dental im-plants[J].Journal of Bio-and Tribo-Corrosion,2015,1(3):23.

    • [25] WANG Y,LOU J,ZENG L,et al.Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys [J].Applied Surface Science,2017,412:29-36.

    • [26] SHANG W,CHEN B,SHI X,et al.Electrochemical corro-sion behavior of composite MAO/sol-gel coatings on magnesi-um alloy AZ91D using combined micro-arc oxidation and sol-gel technique[J].Journal of Alloys & Compounds,2009,474(1-2):541-545.

    • [27] SASIKUMAR Y,INDIRA K,RAJENDRAN N,et al.Sur-face modification methods for titanium and its alloys and their corrosion behavior in biological environment:A review[J].Journal of Bio-and Tribo-Corrosion,2019,5(2):25-36.

    • [28] 许正波,郎朗.医用钛合金微弧氧化和溶胶凝胶复合膜层的耐蚀性探讨[J].中国医学装备,2019,16(4):48-51.XU Z B,LANG L.Exploration of corrosion resistance of MAO and sol-gel composite film layer of medical titanium al-loys[J].China Medical Equipment,2019,16(4):48-51(in Chinese).

    • [29] RAFIEERAD A R,ASHRA M R,MAHMOODIAN R,et al.Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation:A review paper[J].Materials Science and Engineering C,2015,57:397-413.

    • [30] WENG W,HAN G,DU P,et al.The effect of citric acid addition on the formation of sol-gel derived hydroxyapatite [J].Materials Chemistry Physics,2002,74(1):92-97.

    • [31] ZHAO L C,CUI C X,WANG X,et al.Corrosion resistance and calcium-phosphorus precipitation of micro-arc oxidized-magnesium for biomedical applications[J].Applied Surface Science,2015,330:431-438.

    • [32] IOKU K.Tailored bioceramics of calcium phosphates for re-generative medicine[J].Journal of the Ceramic Society of Japan,2010,118(1381):775-783.

    • [33] HE D H,WANG P,LIU P,et al.HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy [J].Surface & Coatings Technology,2015,277:203-209.

    • [34] DOMÍNGUEZ-TRUJILLO C,PEÓN E,CHICARDI E,et al.Sol-gel deposition of hydroxyapatite coatings on porous ti-tanium for biomedical applications[J].Surface & Coatings Technology,2018,333:158-162.

    • [35] GU Y H,ZHENG X H,LIU Q et al.Investigating corrosion performance and corrosive wear behavior of sol-gel/MAO-coa-ted Mg alloy[J].Tribology Letters,2018,66(3):101.

    • [36] NIU B,SHI P,SHANSHAN E,et al.Preparation and char-acterization of HA sol-gel coating on MAO coated AZ31 alloy [J].Surface & Coatings Technology,2016,286:42-48.

    • [37] ZANCANELA D C,SIMÃO A M S,FRANCISCO C G,et al.Graphene oxide and titanium:synergistic effects on the biomineralization ability of osteoblast cultures[J].Journal of Materials Science Materials in Medicine,2016,27(4):71.

    • [38] RAMEZANZADEH B,KARDAR P,BAHLAKEH G,et al.Fabrication of a highly tunable graphene oxide composite through layer-by-layer assembly of highly crystalline polyani-line nanofibers and green corrosion inhibitors:complementaryexperimental and first-principles quantum-mechanics model-ing approaches[J].The Journal of Physical Chemistry C,2017,121(37):20433-20450.

    • [39] GUPTA R K,MALVIYA M,VERMA C,et al.Aminoazo-benzene and diaminoazobenzene functionalized graphene ox-ides as novel class of corrosion inhibitors for mild steel:Ex-perimental and DFT studies [J].Materials Chemistry & Physics,2017,198:360-373.

    • [40] HE W T,ZHU L Q,CHEN H,et al.Electrophoretic depo-sition of graphene oxide as a corrosion inhibitor for sintered NdFeB[J].Applied Surface Science,2013,279:416-423.

    • [41] XUE B,YU M,LIU J,et al.Corrosion protection of AA2024-T3 by sol-gel film modified with graphene oxide [J].Journal of Alloys & Compounds,2017,725:84-95.

    • [42] ZUO Y,LI T L,YU P H,et al.Effect of graphene oxide ad-ditive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy[J].Applied Surface Science,2019,480:26-34.

    • [43] WEN C,ZhAN X,HUANG X,et al.Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method [J].Surface & Coatings Technology,2017,317:125-133.

    • [44] KOKUBO T,TAKADAMA H.How useful is SBF in predic-ting in vivo bone bioactivity?[J].Biomaterials,2006,27(15):2907-2915.

    • [45] MATYKINA E,ARRABAL R,BMING O,et al.In vitro corrosion performance of PEO coated Ti and Ti6Al4V used for dental and orthopaedic implants[J].Surface & Coatings Technology,2016,307:1255-1264.

    • [46] HONG M H,LEE D H,et al.Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by microarc oxidation[J].Thin Solid Films,2011,519(20):7065-7070.

    • [47] ZYWITZKI O,MODES T,SAHM H,et al.Structure and properties of crystalline titanium oxide layers deposited by re-active pulse magnetron sputtering [J].Surface & Coating Technology,2004,180:538-543.

    • [48] PARODI M B,RODR’GUEZ L,PAZOS L,et al.Applica-tion of the Berreman effect to the characterization of TiO2 thin layers formed onto titanium substrates[J].Procedia Materi-als Science,2012,1:469-474.

    • [49] DA COSTA R C,RODRIGUES A D,CUNHA T R,et al.Raman scattering and phonon anharmonicity as a tool for as-sisting TiO2-based ceramics synthesis[J].Ceramics Interna-tional,2017,43(1):116-120.

    • [50] GU Y,CHEN L,YUE W,et al.Corrosion behavior and mechanism of MAO coated Ti6Al4V with a grain-fined sur-face layer[J].Journal of Alloys & Compounds,2016,664:770-776.

    • [51] CHEN F,YU P H,ZHANG Y L.Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy[J].Journal of Alloys & Compounds,2017,711:342-348.

    • [52] SHOKOUHFAR M,DEHGHANIAN C,MONTAZERI M,et al.Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance:Part II [J].Applied Surface Sci-ence,2012,258(7):2416-2423.

    • [53] ZHENG X H,LIU Q,MA H J,et al.Probing local corro-sion performance of sol-gel/MAO composite coating on Mg al-loy[J].Surface & Coatings Technology,2018,347:286-296.

    • [54] MANOJ KUMAR R,KUNTAL K K,SINGH S,et al.Elec-trophoretic deposition of hydroxyapatite coating on Mg-3Zn al-loy for orthopaedic application[J].Surface & Coatings Tech-nology,2016,287:82-92.

    • [55] IKHE A B,KALE A B,JEONG J,et al.Perfluorinated pol-ysiloxane polysiloxane hybridized with graphene oxide for cor-rosion inhibition of AZ31 magnesium alloy [J].Corrosion Science,2016,109:238-245.

    • [56] SU Y,KRAVETS V G,WONG S L,et al.Impermeable bar-rier films and protective coatings based on reduced graphene oxide[J].Nature Communications,2014,5(1):1-5.

    • [57] KUMAR S,NARAYANAN T S N S,GANESH SUANDARA RAMAN S,et al.Surface modification of CP-Ti to improve the fretting-corrosion resistance:Thermal oxidation vs.ano-dizing[J].Materials Science & Engineering C,2010,30(6):921-927.

    • [58] OLIVEIRA F G,RIBEIROB A R,PEREZ G,et al.Under-standing growth mechanisms and tribocorrosion behaviour of porous TiO2anodic films containing calcium,phosphorousand magnesium[J].Applied Surface Science,2015,341:1-12.

    • [59] ZHANG G,XU Y,XIANG X,et al.Tribological perform-ances of highly dispersed graphene oxide derivatives in vege-table oil[J].Tribology International,2018,126:39-48.

    • [60] FAZEL M,SALIMIJAZI H R,SHAMANIAN M.Improve-ment of corrosion and tribocorrosion behavior of pure titanium by subzero anodic spark oxidation[J].ACS Applied Materi-als & Interfaces,2018,10(17):15281-15287.

  • 手机扫一扫看