- 表面工程研究 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

黄平(1975—),女(汉),教授,博士;研究方向:金属材料的表面改性及涂层;E-mail:huangping@mail.xjtu.edu.cn

中图分类号:TG174.444

文献标识码:A

文章编号:1007-9289(2020)02-0087-10

DOI:10.11933/j.issn.1007-9289.20191231002

参考文献 1
BROVA M J,ALAT E,PAULEY M A,et al.Undoped and ytterbium-doped titanium aluminum nitride coatings for im-proved oxidation behavior of nuclear fuel cladding[J].Sur-face & Coatings Technology,2017,331:163-171.
参考文献 2
STEINBRüCK M,VéR N,GROßE M.Oxidation of ad-vanced zirconium cladding alloys in steam at temperatures in the range of 600-1200℃ [J].Oxidation of Metals,2011,76(3):215-232.
参考文献 3
杨红艳,张瑞谦,彭小明,等.锆合金包壳表面涂层研究进展[J].表面技术,2017,46(1):69-77.YANG H Y,ZHANG R Q,PENG X M,et al.Research progress regarding surface coating of zirconium alloy cladding [J].Surface Technology,2017,46(1):69-77.
参考文献 4
TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.
参考文献 5
PINT B A,TERRANI K A,YAMAMOTO Y,et al.Material selection for accident tolerant fuel cladding[J].Metallurgical and Materials Transactions E,2015,2(3):190-196.
参考文献 6
DOYLE P J,RAIMAN S S,REBAK R,et al.Characteriza-tion of the hydrothermal corrosion behavior of ceramics for ac-cident tolerant fuel cladding[C]∥Proceedings of the 18th In-ternational Conference on Environmental Degradation of Ma-terials in Nuclear Power Systems-Water Reactor,2019.
参考文献 7
TERRANI K A.Accident tolerant fuel cladding develop-ment:Promise,status,and challenges[J].Journal of Nu-clear Materials,2018,501:13-30.
参考文献 8
KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated zircal-oy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531.doi:10.1016/j.jnucmat.2015.06.030.
参考文献 9
KIM J M,HA T H,KIM I H,et al.Microstructure and oxi-dation behavior of CrAl laser-coated zircaloy-4 alloy [J].Metals,2017.dio:10.3390/met7020059.
参考文献 10
WANG Y,ZHOU W,WEN Q,et al.Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions [J].Surface & Coatings Technology,2018,344:141-148.
参考文献 11
ZHONG W,MOUCHE P A,HAN X,et al.Performance of iron-chromium-aluminum alloy surface coatings on zircaloy 2 under high-temperature steam and normal BWR operating conditions[J].Journal of Nuclear Materials,2016,470:327-338.
参考文献 12
KUPRIN А,BELOUS V,VOYEVODIN V,et al.Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air[J].Journal of Nu-clear Materials,2015,465:400-406.
参考文献 13
KUPRIN A,BELOUS V,VOYEVODIN V,et al.High-tem-perature air oxidation of E110 and Zr-1Nb alloys claddings with coatings[J].Problems of Atomic Science and Technolo-gy,2014,89:126-132.
参考文献 14
GRECZYNSKI G,LU J,TENGSTRAND O,et al.Nitrogen-doped bcc-Cr films:Combining ceramic hardness with metal-lic toughness and conductivity[J].Scripta Materialia,2016,122:40-44.
参考文献 15
BULBUL F,EFEOGLU I.Stress-relief solutions for brittle TiB2coatings [J].Surface Review and Letters,2012,19(4):1250045.
参考文献 16
TU J N,DUH J G,TSAI S Y.Morphology,mechanical properties,and oxidation behavior of reactively sputtered Cr-N films[J].Surface & Coatings Technology,2000,133-134:181-185.
参考文献 17
FORNIÉS E,ESCOBAR GALINDO R,SÁNCHEZ O,et al.Growth of CrNx films by DC reactive magnetron sputtering at constant N2/Ar gas flow[J].Surface & Coatings Technolo-gy,2006,200(20):6047-6053.
参考文献 18
REBHOLZ C,ZIEGELE H,LEYLAND A,et al.Structure,mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering [J].Surface & Coatings Technology,1999,115(2-3):222-229.
参考文献 19
PAKALA M,LIN R Y.Reactive sputter deposition of chro-mium nitride coatings[J].Surface & Coatings Technology,1996,81(2-3):233-239.
参考文献 20
HILPERT K,DAS D,MILLER M,et al.Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes[J].Journal of the Electrochemical Society,1996,143(11):3642-3647.
参考文献 21
OPILA E J,MYERS D L,JACOBSON N S,et al.Theoreti-cal and experimental investigation of the thermochemistry of CrO2(OH)2(g)[J].The Journal of Physical Chemistry A,2007,111(10):1971-1980.
参考文献 22
KOFSTAD P,LILLERUD K.Chromium transport through Cr2O3 scales I.On lattice diffusion of chromium[J].Oxida-tion of Metals,1982,17(3-4):177-194.
参考文献 23
MURRIS I,JACOB Y,HAANAPPEL V,et al.High-tem-perature oxidation behavior of chromium:Effect of different batches[J].Oxidation of Metals,2001,55(3-4):307-331.
参考文献 24
HÄNSEL M,QUADAKKERS W,YOUNG D.Role of water vapor in chromia-scale growth at low oxygen partial pressure [J].Oxidation of Metals,2003,59(3-4):285-301.
参考文献 25
GUILLOU S,CABET C,DESGRANGES C,et al.Influence of hydrogen and water vapour on the kinetics of chromium ox-ide growth at high temperature [J].Oxidation of Metals,2011,76(3-4):193-214.
参考文献 26
YEOM H,MAIER B,JOHNSON G,et al.High temperature oxidation and microstructural evolution of cold spray chromi-um coatings on Zircaloy-4 in steam environments[J].Journal of Nuclear Materials,2019,526:151737.
参考文献 27
VOSS D,BUTLER E,MITCHELL T.The growth of hema-tite blades during the high temperature oxidation of iron[J].Metallurgical Transactions A,1982,13(5):929-935.
参考文献 28
LILLERUD K,KOFSTAD P.On high temperature oxidation of chromium I.Oxidation of annealed,thermally etched chro-mium at 800-1100 ℃ [J].Journal of the Electrochemical Society,1980,127(11):2397-2410.
参考文献 29
FERNANDES F,YAQUB T,CAVALEIRO A.Influence of Ag additions on the structure,mechanical properties and oxi-dation behaviour of Cr-O coatings deposited by HiPIMS[J].Surface & Coatings Technology,2018,339:167-180.
参考文献 30
CHEN H Y,LU F H.Oxidation behavior of chromium nitride films[J].Thin Solid Films,2006,515(4):2179-2184.
参考文献 31
LIN J,ZHANG N,SPROUL W D,et al.A comparison of the oxidation behavior of CrN films deposited using continu-ous dc,pulsed dc and modulated pulsed power magnetron sputtering[J].Surface & Coatings Technology,2012,206(14):3283-3290.
参考文献 32
TERRANI K A,PARISH C M,SHIN D,et al.Protection of zirconium by alumina-and chromia-forming iron alloys under high-temperature steam exposure[J].Journal of Nuclear Ma-terials,2013,438(1-3):64-71.
参考文献 33
DONG Y,GE F,MENG F,et al.Improved oxidation resist-ance of zirconium at high-temperature steam by magnetron sputtered Cr-Al-Si ternary coatings[J].Surface & Coatings Technology,2018,350:841-847.
参考文献 34
LEE C M,JEONG H Y,YOON A,et al.Microstructural characteristics and different effects of 800-1200℃ preformed oxides on high-temperature steam oxidation of a zirconium al-loy cladding[J].Journal of Alloys and Compounds,2018,753:119-129.
参考文献 35
KIM H G,KIM I H,JUNG Y I,et al.Out-of-pile perform-ance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J].Journal of Nuclear Materials,2018,510:93-99.
参考文献 36
KUPRIN A,BELOUS V,BRYK V,et al.Vacuum-arc chro-mium coatings for Zr-1Nb alloy protection against high-tem-perature oxidation in air [J].Problems of Atomic Science and Technology,2015(2):111-118.
参考文献 37
BRACHET J C,IDARRAGA-TRUJILLO I,LE FLEM M,et al.Early studies on Cr-coated zircaloy-4 as enhanced acci-dent tolerant nuclear fuel claddings for light water reactors [J].Journal of Nuclear Materials,2019,517:268-285.
参考文献 38
TANG C,STEINBRÜCK M,GROßE M,et al.Oxidation behavior of Ti2AlC in the temperature range of 1400° C-1600° C in steam[J].Journal of Nuclear Materials,2017,490:130-142.
参考文献 39
CHIM Y,DING X,ZENG X,et al.Oxidation resistance of TiN,CrN,TiAlN and CrAlN coatings deposited by lateral ro-tating cathode arc[J].Thin Solid Films,2009,517(17):4845-4849.
参考文献 40
LU F H,CHEN H Y.Phase changes of CrN films annealed at high temperature under controlled atmosphere [J].Thin Solid Films,2001,398:368-373.
参考文献 41
LIN J,MOORE J J,WANG J,et al.High temperature oxi-dation behavior of CrN/AlN superlattice films[J].Thin Solid Films,2011,519(8):2402-2408.
参考文献 42
MENG C,YANG L,WU Y,et al.Study of the oxidation be-havior of CrN coating on Zr alloy in air[J].Journal of Nucle-ar Materials,2019,515:354-369.
参考文献 43
WILLMANN H,MAYRHOFER P,PERSSON P Å,et al.Thermal stability of Al-Cr-N hard coatings[J].Scripta Mate-rialia,2006,54(11):1847-1851.
参考文献 44
HU X,DONG C,WANG Q,et al.High-temperature oxida-tion of thick Cr coating prepared by arc deposition for acci-dent tolerant fuel claddings[J].Journal of Nuclear Materi-als,2019,519:145-156.
参考文献 45
DORCHEH A S,SCHÜTZE M,GALETZ M C.Factors af-fecting isothermal oxidation of pure chromium in air[J].Cor-rosion Science,2018,130:261-269.
参考文献 46
PANJAN P,DRNOVŠEK A,KOVACˇ J,et al.Oxidation re-sistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering [J].Thin Solid Films,2015,591:323-329.
参考文献 47
PINT B A,TERRANI K A,BRADY M P,et al.High tem-perature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J].Journal of Nuclear Materi-als,2013,440(1):420-427.
参考文献 48
CHEN G T,KEISER J R,BRADY M P,et al.Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J].Journal of Nuclear Mate-rials,2012,427(1-3):396-400.
参考文献 49
GIGGINS C S.Oxidation of Ni-Cr-Al alloys between 1000℃ and 1200℃ [J].Joural of the Electrochemical Society,1971,118(11):5302-5305.
参考文献 50
LIU Z,GAO W,DAHM K,et al.Improved oxide spallation resistance of microcrystalline nicral coatings[J].Oxidation of Metals,1998,50:51-69.
参考文献 51
ZHU M,LI M,ZHOU Y.Oxidation resistance of Cr1-xAlxN(0.18≤x≤0.47)coatings on K38G superalloy at 1000-1100℃ in air[J].Surface & Coatings Technology,2006,201(6):2878-2886.
参考文献 52
NICHOLLS J.Designing oxidation-resistant coatings [J].The Journal of The Minerals,Metals & Materials Society,2000,52:28-35.
参考文献 53
BRIKS G H M N,PETTIE F S.Introduction to the high temperature oxidation of metals[M].New York:Cambridge University Press,2006.
参考文献 54
BRACHET J C,SAUX LE M,FLEM M LE,et al.On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel[C] ∥Proceeding of Top Fuel,2015,1:31-38.
参考文献 55
CHEN H W,CHAN Y C,LEE J W,et al.Oxidation behav-ior of Si-doped nanocomposite CrAlSiN coatings[J].Surface & Coatings Technology,2010,205(5):1189-1194.
目录contents

    摘要

    为提高锆( Zr)合金的抗高温水蒸气性能,采用磁控溅射技术,通过改变沉积过程中的 N2 流量,在 Zr 合金表面制备不同 Cr/ N 比的涂层,研究不同 N 含量对涂层结构和抗高温水蒸汽氧化性能的影响。 利用扫描电镜、 能谱仪、X 射线衍射仪对涂层氧化前后的表面与截面形貌、化学组成、相结构进行观察和分析,利用纳米压痕仪测量涂层的力学性能,通过高温水蒸汽氧化试验评估涂层的抗氧化性能。 结果表明,随 N 含量的增加,涂层的生长结构分别为“疏松柱状” 、“致密非柱状” 、“致密柱状” 。 其中,“ 致密非柱状” 结构的涂层具有最高的硬度,是“ 疏松柱状”涂层的 2 倍。 同时,该涂层在氧化过程中生成的 Cr2O3 氧化层均匀致密,可以有效防护 Zr 合金基底 6 h 不被氧化。

    Abstract

    In order to improve the safety of zirconium fuel cladding under accident conditions, three different kinds of micro- structure Cr-N coatings were prepared by magnetron sputtering on zirconium alloy substrates. The surface morphology, cross-sec- tional structure, chemical composition and phase structure of the coatings were characterized by scanning electron microscope, energy dispersive spectrometer and X-ray diffractometry. The mechanical properties of the coatings were measured by nanoindent- ation. The oxidation resistance of the coatings were evaluated by high temperature steam oxidation test. The results show that the growth structures of coatings are " porous columnar" , " dense non-columnar" and " dense columnar" , with the increase of N con- tent, respectively. The hardness of " dense non-columnar" coating is 2 times higher than the " porous columnar" . At the same time, the oxidation scale of the coating with " dense columnar" structure is uniform and dense during the oxidation process, which can effectively protect Zr alloy from oxidation for 6 hours.

  • 0 引言

  • 锆(Zr)合金具有低中子吸收、良好的机械性能和耐腐蚀性,是现役的主流燃料棒包壳管材料。但是,在反应堆失水事故下(Loss of coolant accident,LOCA),锆合金与水蒸汽发生严重的锆水反应,生成氢气引起爆炸[1-2]。 因此,提高锆合金在事故工况下的可靠性和安全性具有十分重要的意义。 采用防护涂层提高包壳管抗高温氧化性能是最简单经济的方法,既可继续沿用现有的核用系统和锆合金生产设备,又能提高防护性能[3]

  • 抗高温氧化性是锆合金表面防护涂层的事故容错能力的一个主要性能。 金属铬(Cr) 的熔点高、热膨胀系数与锆合金相近,在氧化过程中会形成致密的Cr2O3 氧化层,能减缓或抑制氧化媒质的进一步渗入,因此Cr可作为锆合金表面防护涂层的候选材料[4-7]。 例如,Kim等[8-9]采用3D激光涂层技术制备了Cr和CrAl涂层,并进行了水蒸汽氧化试验,结果表明涂层提高了锆合金基体的抗氧化性。 Wang等[10] 采用等离子体喷涂技术制备了Cr涂层,在1200 °C的水蒸汽环境中,保护锆合金1 h不被氧化。 Zhong等[11] 采用磁控溅射技术制备FeCrAl涂层,研究结果表明涂层有助于减弱锆合金基体的氧化。 目前,Cr基防护涂层的研究主要集中在金属涂层,相关陶瓷涂层的研究较少[12-13]。 由于陶瓷涂层自身的的脆性,若直接在Zr合金表面涂覆,在核燃料机械制备过程中涂层很容易开裂[3]。 而金属陶瓷复合涂层既有金属的韧性,又有陶瓷的高硬度、耐腐蚀等特性[14],在Zr合金防护方面具有应用前景。

  • 文中将适量的N元素掺杂进Cr涂层中,制备金属陶瓷复合涂层。 并进一步研究了N含量对复合涂层形貌、结构、力学性能、抗高温水蒸汽氧化性能的影响。

  • 1 试验与表征

  • 1.1 样品制备

  • 采用磁控溅射技术在Zr合金(Zr-1.10 Nb1.10 Sn-0.11 Fe-0.13 O) 基底上沉积Cr-N涂层。 在沉积涂层之前,依次用2000、3000、5000、7000 号的碳化硅砂纸对Zr基底进行打磨,然后用金刚石抛光膏抛光。 抛光处理后的Zr基底用丙酮、乙醇、去离子水各超声清洗10 min,再用氮气吹干,保证基底表面清洁。 Zr基底放入沉积室基片架上,基底与靶材间的距离为80 mm。 Cr靶(99.9%)由射频电源驱动,基底施加-10 V的直流偏压,沉积温度为280 °C。 沉积室内背底真空优于5×10-5Pa;沉积过程中的溅射气体为Ar/N2混合气体, 总气压为0.5 Pa。 Ar气流速为50 mL/min, 通过设置N2 流速分别为0、 2、4 mL/min,获得3 种不同N含量的涂层,分别标记为S1、S2、S3。 沉积时间为100 min,3 种涂层厚度均接近10 μm。

  • 1.2 结构表征及力学性能测试

  • 采用Bruker D8 型X射线衍射(XRD) 仪进行涂层氧化前后的相组成分析,测试采用Cu Kα线和 θ/θ 模式。 使用Hitachi S4800 场发射扫描电子显微镜(SEM)和FEI QuantaTM250 FEG SEM观察样品的表面和断口形貌,用附带的EDX功能探测涂层的成分。 在室温下,采用MTS NanoIndenter G200 型(压头为Berkovich)纳米压痕仪对涂层进行硬度测试。 为了减少基底对涂层硬度的影响,设定压入深度约为涂层厚度的10%,即大约为800 nm。 采用Oliver-Pharr方法分析加载卸载曲线得到涂层的硬度和弹性模量。 每个样品测试10 次后求取平均值。

  • 高温水蒸汽氧化试验在一台连接有水蒸汽发生器的氧化铝管式炉中进行。 炉温上升到1200℃后,向炉管中通入流速均匀的水蒸汽。 之后将样品送入炉管中部,保温所需时间。 氧化试验完成后,将样品取出空冷至室温。 样品氧化前后均使用测量精度为0.01 mg的天平称量,以计算涂层的氧化增重。 氧化前后的样品均在液氮中进行脆性断裂以观察截面形貌,截面样品经环氧树脂封装、打磨抛光后分析截面成分。

  • 2 结果与讨论

  • 2.1 涂层成分,结构和力学性能

  • 涂层的成分、厚度、主要结构特征和力学性能见表1。 随着N2 流量的增加,涂层S1、S2、S3中的N的原子数分数分别为0%, 13.1%和18.5%。 图1 是涂层的XRD图谱。 S1 是纯Cr涂层, 呈现( 110) 择优生长。 S2 的图谱中在42.6°出现六方相Cr2N的衍射峰,同时在63.5°存在强度很弱的立方相CrN的衍射峰,因此涂层是Cr2N和Cr两相为主的多相混合。 S3 图谱中Cr2N和CrN的峰强度增加,Cr的峰强度降低,涂层是以氮化物相为主的多相混合。

  • 表1 涂层的成分,厚度,主要结构特征和力学性能

  • Table1 Elemental composition, thickness, main microstructural features and mechanical properties for the coatings

  • 图1 不同N含量涂层的XRD图谱

  • Fig.1 XRD patterns of coatings with different N contents

  • 图2 是3 种涂层的表面和截面形貌。 S1 表面呈现不规则的团簇状形貌,团簇之间存在大量的空隙,团簇内部结合较为紧密;截面形貌显示S1 是典型的柱状晶结构,每个晶柱都贯穿整个涂层,具有清晰的边界。 S2 表面是圆形颗粒紧密排布,几乎没有空隙;截面形貌为均匀致密质地,没有明显的晶柱。 S3 表面呈“柳叶状”,晶粒之间存在少量的空隙;截面形貌也显示出柱状晶结构,但相对S1 较致密,柱状结构之间的边界不清晰,且未贯穿整个涂层。 总体来说,S1、S2、S3 的结构特征分别为“疏松柱状”、“致密非柱状”、“致密柱状”。

  • 图2 涂层的表面和截面形貌

  • Fig.2 Surface and cross-sectional morphologies of the coatings

  • 图3 是涂层划痕测试的声谱图。 结合各个涂层样品的截面形貌和划痕测试结果发现:S1 涂层与基体界面结合紧密,边界清晰;声信号图谱波动较小,涂层结合较好。 S2 涂层与基体界面存在互扩散现象;声信号图谱显示,当施加的压力约为20 N时,涂层发生持续的开裂剥落。 S3 涂层与基体界面结合力较弱,在脆性断裂制备截面样品的过程中,涂层和基体就已经发生分离;当划头压力约为13 N时,涂层开始发生剥落。 综上,随着氮含量的不断增加,涂层发生剥落的临界载荷在不断减小(从20 N减小到13 N),这一现象的原因与涂层中氮化物相的增多,涂层硬度增大,脆性增加有关。

  • 图3 涂层划痕测试的声谱图

  • Fig.3 Acoustic emission signals of the coatings scratch test

  • 3 个样品中涂层硬度和弹性模量最低的是S1,其值分别为(7.2±0.3) GPa和(239±8) GPa;S2 最高,其值分别为(15.9±2.5) GPa和(285±9) GPa。 S2 的硬度约为S1 的2 倍,但是弹性模量却没有大幅度的变化。 Zr基底的硬度和弹性模量分别为(3.3±0.5) GPa和(126±5) GPa,显然,涂层提高了Zr基底表面的力学性能。 涂层硬度值的变化与N的引入密切相关,主要原因有以下两点:1 结构的致密化;研究表明硬度与缺陷密度和晶界强度密切相关[15-17]。 如图2 所示,随N含量的变化涂层的生长结构不同,样品S1、S3的“柱状晶”结构中存在明显的缝隙,其中S1 的柱状晶间边界清晰,说明结合强度弱,S3 柱状晶之间边界模糊,结合强度较高;S2 呈“致密非柱状”结构,缺陷少,晶粒间结合紧密,有助于硬度的提高;2 N的固溶强化作用;随着沉积过程中氮气流量的增大,Cr晶格中固溶N原子的量不断增加,晶格畸变的程度增加,引起涂层硬度的增大[18-19]

  • 2.2 水蒸汽氧化行为

  • 所有样品在1200℃的水蒸汽环境中进行了抗氧化性测试。 氧化试验时长分别为1、2、4 和6 h涂层表面的质量增加(W gain ) 和Zr合金氧化深度(D Zr(O))的测量结果见表2。

  • 表2 高温氧化试验后涂层质量增重(W gain)和氧化深度(D Zr(O))

  • Table2 Weight gain(W gain) and oxidation depth(D Zr(O) ) of coatings after high temperature oxidation test

  • 试验结果表明,这3 种涂层的抗氧化性从高到低依次为S2、S3、S1。 S2 具有最佳的防护性能,能够保护Zr基底6 h不被氧化。 S3 的有效防护时间可大于4 h;但在6 h的试验中Zr基底被氧化了50 μm,氧化深度仅仅是未涂覆涂层样品氧化深度(300 μm)的1/6。 S1 在2 h发生了失效,其对应Zr基底的氧化深度是80 μm。 涂层的生长结构会影响到涂层的氧化机理和抗氧化性能。

  • 2.2.1 S1 的氧化行为

  • 图4 是不同涂层经过1 h氧化后的XRD图谱。 从图4 中可以看到,S1 在氧化后,产物仅有Cr2O3。 这主要是因为在1200 °C高温下,Cr的氧化物仅有Cr2O3 以固态存在,其余氧化物和氢氧化物如CrO2、CrO3、CrO2(OH)2 等均为气态,在氧化过程中以挥发的形式消失了[20-21]。 在长时间的高温氧化过程中,挥发会使得涂层的质量增重(W gain)减小,温度越高挥发越严重[22-23]

  • S1 经过1 h氧化后的表面形貌如图5( a)所示。 S1 的表面分布着密集的“颗粒状”和“棒状”的氧化物,许多研究者认为这些氧化物颗粒的形成是由于氧化过程中Cr离子的短路扩散[24-27]。而S1“疏松柱状”结构间的缝隙有助于Cr离子的扩散,进一步促进了表面氧化物颗粒的产生。 S1经1 h氧化后的截面形貌如图5( b) 所示,结合XRD和EDS线扫描的结果可以看出,涂层氧化后分为3 层,分别是Cr2O3 氧化层、氧化后的残余涂层、Cr-Zr互扩散层。 其中,Cr2O3 氧化层厚度约为8 μm,顶部凹凸不平,层内弥散分布着大量的孔洞,底部与氧化后的残余涂层相接的界面处也存在少量的孔洞。

  • 图4 涂层氧化1 h的XRD图谱

  • Fig.4 XRD patterns for coatings after oxidation for 1 h

  • 图5 S1 氧化后的表面和截面形貌

  • Fig.5 Surface and cross-sectional morphologies of S1 after oxidation

  • 孔洞的形成是由于Cr离子向外扩散导致的[28-31]。 氧化后的残余涂层厚度约5 μm,未观察到明显的孔洞和开裂等缺陷,EDS的结果表明在这一层当中氧含量下降明显,说明Cr2O3 氧化层减弱了涂层的氧化反应。 在高温氧化的过程中,由于Cr、Zr的互扩散,在涂层和Zr基底之间形成了约3 μm的Cr-Zr扩散层,参考Cr-Zr相图可知, 扩散层中有ZrCr2 的金属间化合物形成[10, 32]。 有研究表明互扩散区的形成可以提高涂层和Zr基底间的附着力[33]

  • S1 经过2 h氧化后的表面形貌如图5( c)所示。 氧化时长增加到2 h,S1 表面产生了大量的裂纹,并发生翘起。 图5( d)是S1 氧化2 h后的截面形貌,最顶层的Cr2O3 氧化层发生了塑性变形,变形区域下部的Zr基底被氧化。 基底氧化区域以一点为中心呈辐射状,深度约80 μm,并且氧化区域有裂纹产生,这是高温蒸汽环境下Zr合金氧化的特征[34-36]。 氧化后S1 涂层面的单位面积增重值为75.3 mg/cm2,这个值约为1 h的12 倍,说明涂层的防护能力已完全丧失,Zr基底发生严重的氧化。 有研究表明,防护涂层在失效后反而会促进Zr基底的氧化,但是具体原因尚不清楚[37-38]。 综上,“疏松柱状”结构的Cr涂层有效耐高温水蒸汽性能小于2 h。

  • 2.2.2 S2 的氧化行为

  • 图4 显示样品S2、S3 经过氧化后的XRD图谱,图谱中没有检测到氮化物的存在,氧化过程中可能发生的反应如下:

  • 23Cr2N+O2=23Cr2O3+13N2
    (1)
  • 43CrN+O2=23Cr2O3+23N2
    (2)
  • Cr2N=2Cr+12N2
    (3)
  • CrN=Cr+12N2
    (4)
  • 上述化学反应式表明,氮元素释放的途径有两种,分别是氧化和分解[39-42]。 Kuprin A等[36] 在研究中发现CrN涂层在660 °C发生轻微的氧化。当温度升高到1100 °C,CrN的衍射峰完全消失。Lu等[40]在1100 °C对CrN涂层进行氧化研究,当氧化时长为2 h,涂层中的CrN衍射峰完全消失。但Willman H等[43] 在1450 °C的Ar气氛中对含Cr的氮化物涂层进行退火,结果在XRD图谱中检测到Cr2N的衍射峰。 因此,涂层中CrN、Cr2N相的消失主要是由于高温氧化而不是分解。

  • S2 经过1 h氧化后的表面和截面形貌如图6所示。 图6(a)是经过1 h氧化的表面形貌,样品S2 表面平整,有“米粒状”的氧化物颗粒生成,颗粒分布的密度较为稀疏。 图6(b)为S2 经过1 h氧化后的截面形貌。 与S1 相似,氧化后形成了3 层结构。 但是样品S2 表面形成的Cr2O3 氧化层的均匀性、致密性、连续性好于S1。

  • 图6 S2 氧化后的表面和截面形貌

  • Fig.6 Surface and cross-sectional images of S2 after oxidation

  • 图6(c)为S2 经过2 h氧化后的表面形貌。样品S2 表面氧化物呈颗粒状,与1 h的样品相比,体积明显增大,但密度降低,同时仍有新的氧化物颗粒在不断生成;图6(d)是经过2 h氧化后的截面形貌,图中Cr2O3 氧化层的厚度在2 h的氧化过程中几乎没有增加,与氧化后的残余涂层结合紧密,说明前期形成的致密Cr2O3 氧化层有效抑制了氧化反应的进行。

  • 图6( e) 为样品S2 经6 h氧化后的表面形貌。 经过6 h氧化,样品表面产生“鼓包”,相似的现象在Cr的氧化研究中也有报道[22, 44-45]。 同时,可以观察到大量的圆形斑点。 这些斑点在Panjan P等[46] 的研究中被称为“结节状缺陷”,是由于涂层在氧化过程中产生较大的压缩应力引起的。 于其他区域相比,“结节状缺陷”区域更容易发生氧化。 图6(f)是“鼓包”区域的截面形貌。 Cr2O3 氧化层发生塑性变形,与氧化后的残余涂层之间发生分离。 采用EDS点扫描分析不同区域(A~E)的元素成分,结果如表3 所示。

  • 表3 图6 标记点的EDS分析结果

  • Table3 EDS analysis results for the points labeled in Fig.6

  • A、B点成分相近,说明Cr2O3 氧化层均匀;C点以Cr为主,含有少量的氧,说明涂层尚未完全氧化;D点形成了金属间化合物ZrCr2;E点仅含有极少量的氧,说明Zr基底的氧化程度极低。

  • 综上,“致密非柱状”结构的涂层可以成功保护Zr基底6 h。

  • 2.2.3 S3 的氧化行为

  • S3 经过1 h氧化后的表面形貌如图7(a)所示。经过1 h的氧化,S3 表面生成大量形状不规则的氧化物颗粒。 图7(b)是S3 氧化1 h后的截面形貌;顶部的Cr2O3 氧化层中存在着连续的孔洞,Cr2O3 氧化层与氧化后的残余涂层之间由于Cr离子向外扩散后空位的大量聚集,产生了明显的分离。

  • 图7(c)为S3 经过2 h氧化后的表面形貌。随着氧化时间的增加,样品表面的氧化物颗粒体积增大,未被氧化物颗粒覆盖的区域较为平整。图7(d)是2 h氧化后的截面形貌,Cr2O3 氧化层的厚度增加,分布在其中的孔洞数量增多;氧化后的残余涂层厚度减小,说明氧化过程中形成的氧化层致密度不高,对于氧化媒质的阻碍能力有限,涂层持续快速消耗。

  • 图7 S1 氧化后的表面和截面形貌

  • Fig.7 Surface and cross-sectional morphologies of S3 after oxidation

  • 图7(e)是经过6 h氧化后S3 的表面形貌。涂层表面布满大小不一的“鼓包”,鼓起的区域大面积开裂,部分区域剥落。 氧化后的截面形貌为图7(f),图中G~M点的EDS结果如表4 所示。

  • 表4 图7 标记点的EDS分析结果

  • Table4 EDS analysis results for the points labeled in Fig.7

  • 最上层开裂的区域是Cr2O3 氧化层(点G),因为隔离层不断生成、增厚,层中的内应力持续增加,最终达到其所能承受的极限,应力就通过Cr2O3 氧化层的塑性变形释放。 裂纹产生为氧化媒质的快速扩散提供通道,导致氧化后的残余涂层完全被氧化(点H)。 氧化后的残余涂层生成的Cr2O3 氧化层疏松多孔,不能有效阻碍氧化媒质向基底的扩散,约有50 μm的Zr基底被氧化(点J、K)。 已有少量的氧扩散到更深层的基底中(点M)。 Zr在氧化过程中由于相变而导致的体积膨胀,使样品表面凸起,内部产生裂纹,这又进一步促进了基底的氧化。 综上,“致密柱状”结构的涂层有效防护时间大于4 h,但小于6 h。

  • 大量关于热障涂层的研究表明涂层的抗氧化能力主要依赖氧化过程中形成的防护性氧化膜。 均匀、致密、连续的氧化膜可以阻碍氧化介质的扩散, 从而大幅提高涂层的抗氧化性能[11, 47-51]。 对比图5(b)、图6(b)、和图7(b)中S1、S2 和S3 的Cr2O3 氧化层,其中S1 最为疏松,层中连续孔洞最多;S3 较S1 致密程度增加,但层中仍旧分布有较多的连续孔洞;S2 最为致密,层中仅有极少数孔洞分布。 因此,样品抗氧化性能S2>S3>S1 的差异直接原因在于生成的Cr2O3 氧化层不同。

  • 氧化膜生成的速率低,则更易形成均匀致密的高质量防护膜[52-53]。 Lin等[31] 观察到沉积态涂层的密度、晶界和晶粒尺寸会影响扩散的活化能。 致密的微观结构对扩散具有较强的阻挡作用。 Brachet等[54]通过减小Cr涂层柱状晶之间的缝隙,大幅度提高Cr涂层的抗氧化性能。 对比沉积态样品S1、S2、S3 的结构,其中S1 和S3柱状晶之间的缝隙是氧化介质短路扩散的通道,不利于致密氧化层的形成[9, 55]。 但是样品S2 的非柱状结构通过消除柱状晶结构之间的缝隙,减缓了氧化反应的进行,有助于形成致密的Cr2O3氧化膜,从而提高涂层的抗氧化性能。

  • 3 结论

  • 采用磁控溅射技术制备出不同N含量的CrN涂层。 并对涂层的结构、力学性能和抗高温水蒸汽氧化性能进行了研究,主要结论如下。

  • (1) 当涂层中N的原子数分数分别为0、13.1%、18.5%时,涂层的结构分别为 “ 疏松柱状”、“致密非柱状”、“致密柱状”。

  • (2) N掺杂显著提高的了涂层的力学性能,其中“致密非柱状”结构的涂层具有最高的硬度(15.9±2.5)GPa和弹性模量(285±9) GPa;硬度值是“疏松柱状”结构涂层的2 倍,是Zr合金的5 倍。

  • (3) 3 种涂层样品均提高了Zr合金在1200℃的水蒸汽环境中的抗氧化性能。 其中“致密非柱状”结构的涂层具有最佳的抗高温氧化性能,可有效防护Zr合金6 h。 优异抗氧化性能的原因是该结构在氧化过程中有助于形成均匀、连续、致密的Cr2O3 氧化层,从而大幅度减少氧化媒质的内扩散,有效的抑制了氧化反应的进行。

  • 参考文献

    • [1] BROVA M J,ALAT E,PAULEY M A,et al.Undoped and ytterbium-doped titanium aluminum nitride coatings for im-proved oxidation behavior of nuclear fuel cladding[J].Sur-face & Coatings Technology,2017,331:163-171.

    • [2] STEINBRüCK M,VéR N,GROßE M.Oxidation of ad-vanced zirconium cladding alloys in steam at temperatures in the range of 600-1200℃ [J].Oxidation of Metals,2011,76(3):215-232.

    • [3] 杨红艳,张瑞谦,彭小明,等.锆合金包壳表面涂层研究进展[J].表面技术,2017,46(1):69-77.YANG H Y,ZHANG R Q,PENG X M,et al.Research progress regarding surface coating of zirconium alloy cladding [J].Surface Technology,2017,46(1):69-77.

    • [4] TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.

    • [5] PINT B A,TERRANI K A,YAMAMOTO Y,et al.Material selection for accident tolerant fuel cladding[J].Metallurgical and Materials Transactions E,2015,2(3):190-196.

    • [6] DOYLE P J,RAIMAN S S,REBAK R,et al.Characteriza-tion of the hydrothermal corrosion behavior of ceramics for ac-cident tolerant fuel cladding[C]∥Proceedings of the 18th In-ternational Conference on Environmental Degradation of Ma-terials in Nuclear Power Systems-Water Reactor,2019.

    • [7] TERRANI K A.Accident tolerant fuel cladding develop-ment:Promise,status,and challenges[J].Journal of Nu-clear Materials,2018,501:13-30.

    • [8] KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated zircal-oy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531.doi:10.1016/j.jnucmat.2015.06.030.

    • [9] KIM J M,HA T H,KIM I H,et al.Microstructure and oxi-dation behavior of CrAl laser-coated zircaloy-4 alloy [J].Metals,2017.dio:10.3390/met7020059.

    • [10] WANG Y,ZHOU W,WEN Q,et al.Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions [J].Surface & Coatings Technology,2018,344:141-148.

    • [11] ZHONG W,MOUCHE P A,HAN X,et al.Performance of iron-chromium-aluminum alloy surface coatings on zircaloy 2 under high-temperature steam and normal BWR operating conditions[J].Journal of Nuclear Materials,2016,470:327-338.

    • [12] KUPRIN А,BELOUS V,VOYEVODIN V,et al.Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air[J].Journal of Nu-clear Materials,2015,465:400-406.

    • [13] KUPRIN A,BELOUS V,VOYEVODIN V,et al.High-tem-perature air oxidation of E110 and Zr-1Nb alloys claddings with coatings[J].Problems of Atomic Science and Technolo-gy,2014,89:126-132.

    • [14] GRECZYNSKI G,LU J,TENGSTRAND O,et al.Nitrogen-doped bcc-Cr films:Combining ceramic hardness with metal-lic toughness and conductivity[J].Scripta Materialia,2016,122:40-44.

    • [15] BULBUL F,EFEOGLU I.Stress-relief solutions for brittle TiB2coatings [J].Surface Review and Letters,2012,19(4):1250045.

    • [16] TU J N,DUH J G,TSAI S Y.Morphology,mechanical properties,and oxidation behavior of reactively sputtered Cr-N films[J].Surface & Coatings Technology,2000,133-134:181-185.

    • [17] FORNIÉS E,ESCOBAR GALINDO R,SÁNCHEZ O,et al.Growth of CrNx films by DC reactive magnetron sputtering at constant N2/Ar gas flow[J].Surface & Coatings Technolo-gy,2006,200(20):6047-6053.

    • [18] REBHOLZ C,ZIEGELE H,LEYLAND A,et al.Structure,mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering [J].Surface & Coatings Technology,1999,115(2-3):222-229.

    • [19] PAKALA M,LIN R Y.Reactive sputter deposition of chro-mium nitride coatings[J].Surface & Coatings Technology,1996,81(2-3):233-239.

    • [20] HILPERT K,DAS D,MILLER M,et al.Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes[J].Journal of the Electrochemical Society,1996,143(11):3642-3647.

    • [21] OPILA E J,MYERS D L,JACOBSON N S,et al.Theoreti-cal and experimental investigation of the thermochemistry of CrO2(OH)2(g)[J].The Journal of Physical Chemistry A,2007,111(10):1971-1980.

    • [22] KOFSTAD P,LILLERUD K.Chromium transport through Cr2O3 scales I.On lattice diffusion of chromium[J].Oxida-tion of Metals,1982,17(3-4):177-194.

    • [23] MURRIS I,JACOB Y,HAANAPPEL V,et al.High-tem-perature oxidation behavior of chromium:Effect of different batches[J].Oxidation of Metals,2001,55(3-4):307-331.

    • [24] HÄNSEL M,QUADAKKERS W,YOUNG D.Role of water vapor in chromia-scale growth at low oxygen partial pressure [J].Oxidation of Metals,2003,59(3-4):285-301.

    • [25] GUILLOU S,CABET C,DESGRANGES C,et al.Influence of hydrogen and water vapour on the kinetics of chromium ox-ide growth at high temperature [J].Oxidation of Metals,2011,76(3-4):193-214.

    • [26] YEOM H,MAIER B,JOHNSON G,et al.High temperature oxidation and microstructural evolution of cold spray chromi-um coatings on Zircaloy-4 in steam environments[J].Journal of Nuclear Materials,2019,526:151737.

    • [27] VOSS D,BUTLER E,MITCHELL T.The growth of hema-tite blades during the high temperature oxidation of iron[J].Metallurgical Transactions A,1982,13(5):929-935.

    • [28] LILLERUD K,KOFSTAD P.On high temperature oxidation of chromium I.Oxidation of annealed,thermally etched chro-mium at 800-1100 ℃ [J].Journal of the Electrochemical Society,1980,127(11):2397-2410.

    • [29] FERNANDES F,YAQUB T,CAVALEIRO A.Influence of Ag additions on the structure,mechanical properties and oxi-dation behaviour of Cr-O coatings deposited by HiPIMS[J].Surface & Coatings Technology,2018,339:167-180.

    • [30] CHEN H Y,LU F H.Oxidation behavior of chromium nitride films[J].Thin Solid Films,2006,515(4):2179-2184.

    • [31] LIN J,ZHANG N,SPROUL W D,et al.A comparison of the oxidation behavior of CrN films deposited using continu-ous dc,pulsed dc and modulated pulsed power magnetron sputtering[J].Surface & Coatings Technology,2012,206(14):3283-3290.

    • [32] TERRANI K A,PARISH C M,SHIN D,et al.Protection of zirconium by alumina-and chromia-forming iron alloys under high-temperature steam exposure[J].Journal of Nuclear Ma-terials,2013,438(1-3):64-71.

    • [33] DONG Y,GE F,MENG F,et al.Improved oxidation resist-ance of zirconium at high-temperature steam by magnetron sputtered Cr-Al-Si ternary coatings[J].Surface & Coatings Technology,2018,350:841-847.

    • [34] LEE C M,JEONG H Y,YOON A,et al.Microstructural characteristics and different effects of 800-1200℃ preformed oxides on high-temperature steam oxidation of a zirconium al-loy cladding[J].Journal of Alloys and Compounds,2018,753:119-129.

    • [35] KIM H G,KIM I H,JUNG Y I,et al.Out-of-pile perform-ance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J].Journal of Nuclear Materials,2018,510:93-99.

    • [36] KUPRIN A,BELOUS V,BRYK V,et al.Vacuum-arc chro-mium coatings for Zr-1Nb alloy protection against high-tem-perature oxidation in air [J].Problems of Atomic Science and Technology,2015(2):111-118.

    • [37] BRACHET J C,IDARRAGA-TRUJILLO I,LE FLEM M,et al.Early studies on Cr-coated zircaloy-4 as enhanced acci-dent tolerant nuclear fuel claddings for light water reactors [J].Journal of Nuclear Materials,2019,517:268-285.

    • [38] TANG C,STEINBRÜCK M,GROßE M,et al.Oxidation behavior of Ti2AlC in the temperature range of 1400° C-1600° C in steam[J].Journal of Nuclear Materials,2017,490:130-142.

    • [39] CHIM Y,DING X,ZENG X,et al.Oxidation resistance of TiN,CrN,TiAlN and CrAlN coatings deposited by lateral ro-tating cathode arc[J].Thin Solid Films,2009,517(17):4845-4849.

    • [40] LU F H,CHEN H Y.Phase changes of CrN films annealed at high temperature under controlled atmosphere [J].Thin Solid Films,2001,398:368-373.

    • [41] LIN J,MOORE J J,WANG J,et al.High temperature oxi-dation behavior of CrN/AlN superlattice films[J].Thin Solid Films,2011,519(8):2402-2408.

    • [42] MENG C,YANG L,WU Y,et al.Study of the oxidation be-havior of CrN coating on Zr alloy in air[J].Journal of Nucle-ar Materials,2019,515:354-369.

    • [43] WILLMANN H,MAYRHOFER P,PERSSON P Å,et al.Thermal stability of Al-Cr-N hard coatings[J].Scripta Mate-rialia,2006,54(11):1847-1851.

    • [44] HU X,DONG C,WANG Q,et al.High-temperature oxida-tion of thick Cr coating prepared by arc deposition for acci-dent tolerant fuel claddings[J].Journal of Nuclear Materi-als,2019,519:145-156.

    • [45] DORCHEH A S,SCHÜTZE M,GALETZ M C.Factors af-fecting isothermal oxidation of pure chromium in air[J].Cor-rosion Science,2018,130:261-269.

    • [46] PANJAN P,DRNOVŠEK A,KOVACˇ J,et al.Oxidation re-sistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering [J].Thin Solid Films,2015,591:323-329.

    • [47] PINT B A,TERRANI K A,BRADY M P,et al.High tem-perature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J].Journal of Nuclear Materi-als,2013,440(1):420-427.

    • [48] CHEN G T,KEISER J R,BRADY M P,et al.Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J].Journal of Nuclear Mate-rials,2012,427(1-3):396-400.

    • [49] GIGGINS C S.Oxidation of Ni-Cr-Al alloys between 1000℃ and 1200℃ [J].Joural of the Electrochemical Society,1971,118(11):5302-5305.

    • [50] LIU Z,GAO W,DAHM K,et al.Improved oxide spallation resistance of microcrystalline nicral coatings[J].Oxidation of Metals,1998,50:51-69.

    • [51] ZHU M,LI M,ZHOU Y.Oxidation resistance of Cr1-xAlxN(0.18≤x≤0.47)coatings on K38G superalloy at 1000-1100℃ in air[J].Surface & Coatings Technology,2006,201(6):2878-2886.

    • [52] NICHOLLS J.Designing oxidation-resistant coatings [J].The Journal of The Minerals,Metals & Materials Society,2000,52:28-35.

    • [53] BRIKS G H M N,PETTIE F S.Introduction to the high temperature oxidation of metals[M].New York:Cambridge University Press,2006.

    • [54] BRACHET J C,SAUX LE M,FLEM M LE,et al.On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel[C] ∥Proceeding of Top Fuel,2015,1:31-38.

    • [55] CHEN H W,CHAN Y C,LEE J W,et al.Oxidation behav-ior of Si-doped nanocomposite CrAlSiN coatings[J].Surface & Coatings Technology,2010,205(5):1189-1194.

  • 参考文献

    • [1] BROVA M J,ALAT E,PAULEY M A,et al.Undoped and ytterbium-doped titanium aluminum nitride coatings for im-proved oxidation behavior of nuclear fuel cladding[J].Sur-face & Coatings Technology,2017,331:163-171.

    • [2] STEINBRüCK M,VéR N,GROßE M.Oxidation of ad-vanced zirconium cladding alloys in steam at temperatures in the range of 600-1200℃ [J].Oxidation of Metals,2011,76(3):215-232.

    • [3] 杨红艳,张瑞谦,彭小明,等.锆合金包壳表面涂层研究进展[J].表面技术,2017,46(1):69-77.YANG H Y,ZHANG R Q,PENG X M,et al.Research progress regarding surface coating of zirconium alloy cladding [J].Surface Technology,2017,46(1):69-77.

    • [4] TANG C,STUEBER M,SEIFERT H J,et al.Protective coatings on zirconium-based alloys as accident-tolerant fuel(ATF)claddings[J].Corrosion Reviews,2017,35(3):141-165.

    • [5] PINT B A,TERRANI K A,YAMAMOTO Y,et al.Material selection for accident tolerant fuel cladding[J].Metallurgical and Materials Transactions E,2015,2(3):190-196.

    • [6] DOYLE P J,RAIMAN S S,REBAK R,et al.Characteriza-tion of the hydrothermal corrosion behavior of ceramics for ac-cident tolerant fuel cladding[C]∥Proceedings of the 18th In-ternational Conference on Environmental Degradation of Ma-terials in Nuclear Power Systems-Water Reactor,2019.

    • [7] TERRANI K A.Accident tolerant fuel cladding develop-ment:Promise,status,and challenges[J].Journal of Nu-clear Materials,2018,501:13-30.

    • [8] KIM H G,KIM I H,JUNG Y I,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated zircal-oy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531.doi:10.1016/j.jnucmat.2015.06.030.

    • [9] KIM J M,HA T H,KIM I H,et al.Microstructure and oxi-dation behavior of CrAl laser-coated zircaloy-4 alloy [J].Metals,2017.dio:10.3390/met7020059.

    • [10] WANG Y,ZHOU W,WEN Q,et al.Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions [J].Surface & Coatings Technology,2018,344:141-148.

    • [11] ZHONG W,MOUCHE P A,HAN X,et al.Performance of iron-chromium-aluminum alloy surface coatings on zircaloy 2 under high-temperature steam and normal BWR operating conditions[J].Journal of Nuclear Materials,2016,470:327-338.

    • [12] KUPRIN А,BELOUS V,VOYEVODIN V,et al.Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air[J].Journal of Nu-clear Materials,2015,465:400-406.

    • [13] KUPRIN A,BELOUS V,VOYEVODIN V,et al.High-tem-perature air oxidation of E110 and Zr-1Nb alloys claddings with coatings[J].Problems of Atomic Science and Technolo-gy,2014,89:126-132.

    • [14] GRECZYNSKI G,LU J,TENGSTRAND O,et al.Nitrogen-doped bcc-Cr films:Combining ceramic hardness with metal-lic toughness and conductivity[J].Scripta Materialia,2016,122:40-44.

    • [15] BULBUL F,EFEOGLU I.Stress-relief solutions for brittle TiB2coatings [J].Surface Review and Letters,2012,19(4):1250045.

    • [16] TU J N,DUH J G,TSAI S Y.Morphology,mechanical properties,and oxidation behavior of reactively sputtered Cr-N films[J].Surface & Coatings Technology,2000,133-134:181-185.

    • [17] FORNIÉS E,ESCOBAR GALINDO R,SÁNCHEZ O,et al.Growth of CrNx films by DC reactive magnetron sputtering at constant N2/Ar gas flow[J].Surface & Coatings Technolo-gy,2006,200(20):6047-6053.

    • [18] REBHOLZ C,ZIEGELE H,LEYLAND A,et al.Structure,mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering [J].Surface & Coatings Technology,1999,115(2-3):222-229.

    • [19] PAKALA M,LIN R Y.Reactive sputter deposition of chro-mium nitride coatings[J].Surface & Coatings Technology,1996,81(2-3):233-239.

    • [20] HILPERT K,DAS D,MILLER M,et al.Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes[J].Journal of the Electrochemical Society,1996,143(11):3642-3647.

    • [21] OPILA E J,MYERS D L,JACOBSON N S,et al.Theoreti-cal and experimental investigation of the thermochemistry of CrO2(OH)2(g)[J].The Journal of Physical Chemistry A,2007,111(10):1971-1980.

    • [22] KOFSTAD P,LILLERUD K.Chromium transport through Cr2O3 scales I.On lattice diffusion of chromium[J].Oxida-tion of Metals,1982,17(3-4):177-194.

    • [23] MURRIS I,JACOB Y,HAANAPPEL V,et al.High-tem-perature oxidation behavior of chromium:Effect of different batches[J].Oxidation of Metals,2001,55(3-4):307-331.

    • [24] HÄNSEL M,QUADAKKERS W,YOUNG D.Role of water vapor in chromia-scale growth at low oxygen partial pressure [J].Oxidation of Metals,2003,59(3-4):285-301.

    • [25] GUILLOU S,CABET C,DESGRANGES C,et al.Influence of hydrogen and water vapour on the kinetics of chromium ox-ide growth at high temperature [J].Oxidation of Metals,2011,76(3-4):193-214.

    • [26] YEOM H,MAIER B,JOHNSON G,et al.High temperature oxidation and microstructural evolution of cold spray chromi-um coatings on Zircaloy-4 in steam environments[J].Journal of Nuclear Materials,2019,526:151737.

    • [27] VOSS D,BUTLER E,MITCHELL T.The growth of hema-tite blades during the high temperature oxidation of iron[J].Metallurgical Transactions A,1982,13(5):929-935.

    • [28] LILLERUD K,KOFSTAD P.On high temperature oxidation of chromium I.Oxidation of annealed,thermally etched chro-mium at 800-1100 ℃ [J].Journal of the Electrochemical Society,1980,127(11):2397-2410.

    • [29] FERNANDES F,YAQUB T,CAVALEIRO A.Influence of Ag additions on the structure,mechanical properties and oxi-dation behaviour of Cr-O coatings deposited by HiPIMS[J].Surface & Coatings Technology,2018,339:167-180.

    • [30] CHEN H Y,LU F H.Oxidation behavior of chromium nitride films[J].Thin Solid Films,2006,515(4):2179-2184.

    • [31] LIN J,ZHANG N,SPROUL W D,et al.A comparison of the oxidation behavior of CrN films deposited using continu-ous dc,pulsed dc and modulated pulsed power magnetron sputtering[J].Surface & Coatings Technology,2012,206(14):3283-3290.

    • [32] TERRANI K A,PARISH C M,SHIN D,et al.Protection of zirconium by alumina-and chromia-forming iron alloys under high-temperature steam exposure[J].Journal of Nuclear Ma-terials,2013,438(1-3):64-71.

    • [33] DONG Y,GE F,MENG F,et al.Improved oxidation resist-ance of zirconium at high-temperature steam by magnetron sputtered Cr-Al-Si ternary coatings[J].Surface & Coatings Technology,2018,350:841-847.

    • [34] LEE C M,JEONG H Y,YOON A,et al.Microstructural characteristics and different effects of 800-1200℃ preformed oxides on high-temperature steam oxidation of a zirconium al-loy cladding[J].Journal of Alloys and Compounds,2018,753:119-129.

    • [35] KIM H G,KIM I H,JUNG Y I,et al.Out-of-pile perform-ance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J].Journal of Nuclear Materials,2018,510:93-99.

    • [36] KUPRIN A,BELOUS V,BRYK V,et al.Vacuum-arc chro-mium coatings for Zr-1Nb alloy protection against high-tem-perature oxidation in air [J].Problems of Atomic Science and Technology,2015(2):111-118.

    • [37] BRACHET J C,IDARRAGA-TRUJILLO I,LE FLEM M,et al.Early studies on Cr-coated zircaloy-4 as enhanced acci-dent tolerant nuclear fuel claddings for light water reactors [J].Journal of Nuclear Materials,2019,517:268-285.

    • [38] TANG C,STEINBRÜCK M,GROßE M,et al.Oxidation behavior of Ti2AlC in the temperature range of 1400° C-1600° C in steam[J].Journal of Nuclear Materials,2017,490:130-142.

    • [39] CHIM Y,DING X,ZENG X,et al.Oxidation resistance of TiN,CrN,TiAlN and CrAlN coatings deposited by lateral ro-tating cathode arc[J].Thin Solid Films,2009,517(17):4845-4849.

    • [40] LU F H,CHEN H Y.Phase changes of CrN films annealed at high temperature under controlled atmosphere [J].Thin Solid Films,2001,398:368-373.

    • [41] LIN J,MOORE J J,WANG J,et al.High temperature oxi-dation behavior of CrN/AlN superlattice films[J].Thin Solid Films,2011,519(8):2402-2408.

    • [42] MENG C,YANG L,WU Y,et al.Study of the oxidation be-havior of CrN coating on Zr alloy in air[J].Journal of Nucle-ar Materials,2019,515:354-369.

    • [43] WILLMANN H,MAYRHOFER P,PERSSON P Å,et al.Thermal stability of Al-Cr-N hard coatings[J].Scripta Mate-rialia,2006,54(11):1847-1851.

    • [44] HU X,DONG C,WANG Q,et al.High-temperature oxida-tion of thick Cr coating prepared by arc deposition for acci-dent tolerant fuel claddings[J].Journal of Nuclear Materi-als,2019,519:145-156.

    • [45] DORCHEH A S,SCHÜTZE M,GALETZ M C.Factors af-fecting isothermal oxidation of pure chromium in air[J].Cor-rosion Science,2018,130:261-269.

    • [46] PANJAN P,DRNOVŠEK A,KOVACˇ J,et al.Oxidation re-sistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering [J].Thin Solid Films,2015,591:323-329.

    • [47] PINT B A,TERRANI K A,BRADY M P,et al.High tem-perature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J].Journal of Nuclear Materi-als,2013,440(1):420-427.

    • [48] CHEN G T,KEISER J R,BRADY M P,et al.Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J].Journal of Nuclear Mate-rials,2012,427(1-3):396-400.

    • [49] GIGGINS C S.Oxidation of Ni-Cr-Al alloys between 1000℃ and 1200℃ [J].Joural of the Electrochemical Society,1971,118(11):5302-5305.

    • [50] LIU Z,GAO W,DAHM K,et al.Improved oxide spallation resistance of microcrystalline nicral coatings[J].Oxidation of Metals,1998,50:51-69.

    • [51] ZHU M,LI M,ZHOU Y.Oxidation resistance of Cr1-xAlxN(0.18≤x≤0.47)coatings on K38G superalloy at 1000-1100℃ in air[J].Surface & Coatings Technology,2006,201(6):2878-2886.

    • [52] NICHOLLS J.Designing oxidation-resistant coatings [J].The Journal of The Minerals,Metals & Materials Society,2000,52:28-35.

    • [53] BRIKS G H M N,PETTIE F S.Introduction to the high temperature oxidation of metals[M].New York:Cambridge University Press,2006.

    • [54] BRACHET J C,SAUX LE M,FLEM M LE,et al.On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel[C] ∥Proceeding of Top Fuel,2015,1:31-38.

    • [55] CHEN H W,CHAN Y C,LEE J W,et al.Oxidation behav-ior of Si-doped nanocomposite CrAlSiN coatings[J].Surface & Coatings Technology,2010,205(5):1189-1194.

  • 手机扫一扫看