en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

马菱薇(1990—),女(汉),助理研究员,博士;研究方向:防腐涂层与表面技术;E-mail:mlw1215@ustb.edu.cn

中图分类号:TG174.46

文献标识码:A

文章编号:1007-9289(2020)01-0125-08

DOI:10.11933/j.issn.1007-9289.20190703001

参考文献 1
WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Auto-nomic healing of polymer composites [J].Nature,2001,409:794-797.
参考文献 2
FAN W J,ZHANG Y,LI W H,et al.Multi-level self-heal-ing ability of shape memory polyurethane coating with micro-capsules by induction heating [J].Chemical Engineering Journal,2019,368:1033-1044.
参考文献 3
童晓梅,郝芹芹,闫子英,等.纳米 Al2O3 改性三聚氰胺-脲醛自修复微胶囊的制备及应用[J].中国表面工程,2018,31(1):156-164.TONG X M,HAO Q Q,YAN Z Y,et al.Preparation and application of melamine-urea-formaldehyde self-healing mi-crocapsules modified by nano-Al2O3 [J].China Surface En-gineering,2018,31(1):156-164(in Chinese).
参考文献 4
ZHANG F,JU P F,PAN M Q,et al.Self-healing mecha-nisms in smart protective coatings:A review[J].Corrosion Science,2018,144:74-88.
参考文献 5
KUANG X,LIU G M,DONG X,et al.Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker[J].Journal of Poly-mer Science,2015,53:2094-2103.
参考文献 6
胡先海,李根,咸玉席,等.可自修复的黑色聚氨酯材料的制备与性能研究[J].功能材料,2019,5(50):05128-05137.HU X H,LI G,XIAN Y X,et al.Synthesis and properties of a self-healing black polyurethane[J].Journal of Function-al Materials,2019,5(50):05128-05137(in Chinese).
参考文献 7
THAKUR V K,KESSLER M R.Self-healing polymer nano-composite materials:A review [J].Polymer,2015,69:369-383.
参考文献 8
薛诗山,武元鹏,刘兰芳,等.基于金属离子交联的自修复聚丙烯酸水凝胶[J].高分子材料科学与工程,2018,34(7):15-19.XUE S S,WU Y P,LIU L F,et al.Self-healing poly(acryl-ic acid)hydrogels based on crosslinking of metallic ion[J].Polymer Materials Science & Engineering,2018,34(7):15-19(in Chinese).
参考文献 9
CHEN J M,FANG L,XU Z Z,et al.Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light [J].Progress in Organic Coatings,2016,101:543-552.
参考文献 10
PENG P,ZHANG B Y,CAO Z X,et al.Photothermally in-duced scratch healing effects of thermoplastic nanocomposites with gold nanoparticles[J].Composites Science and Tech-nology,2016,133:165-172.
参考文献 11
XUAN D,BONAB V S,PATEL A,et al.Self-healing epoxy coatings with enhanced properties and facile processability [J].Polymer,2018,147:196-201.
参考文献 12
CHEN X,CHEN Y T,YAN M,et al.Nanosecond photo-thermal effects in plasmonic nanostructures[J].ACS Nano,2012,6(3):2550-2557.
参考文献 13
MA L W,WANG J K,ZHAO F T,et al.Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications [J].Composites Science and Technology,2019,181:107696.
参考文献 14
REN P,YANG X C.Synthesis and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation[J].Solar RRL,2018,2:1700233.
参考文献 15
ISHII S,UTO K,NIIYAMA E,et al.Hybridizing Poly(ε-caprolactone)and plasmonic titanium nitride nanoparticles for broadband photoresponsive shape memory films[J].ACS Applied Materials & Interfaces,2016,8:5634-5640.
参考文献 16
邵涛,孙德恩,梁斐珂,等.离子源循环轰击对磁控溅射TiN薄膜结构和电学性能的影响[J].中国表面工程,2017,30(1):77-82.SHAO T,SUN D E,LIANG F K,et al.Effects of ion source cycle bombardment on structure and electrical properties of TiN films prepared by magnetron sputtering[J].China Sur-face Engineering,2017,30(1):77-82(in Chinese).
参考文献 17
FANG L,CHEN J M,ZOU Y T,et al.Self-healing epoxy coatings via focused sunlight based on photothermal effect [J].Macromolecular Materials and Engineering,2017,302:1700059.
参考文献 18
HUANG L,YI N B,WU Y P,et al.Multichannel and re-peatable self-healing of mechanical enhanced graphene-ther-moplastic polyurethane composites[J].Advanced Materials,2013,25:2224-2228.
参考文献 19
XU X H,FAN P D,REN J,et al.Self-healing thermoplastic polyurethane(TPU)/polycaprolactone(PCL)/multi-wall car-bon nanotubes(MWCNTs)blend as shape-memory composites [J].Composites Science and Technology,2018,168:255-262.
参考文献 20
张檬,王寒,蔡文斌,等.金属纳米结构表面等离激元共振增强光电化学反应[J].光谱学与光谱分析,2018,38(10):369-370.ZHANG M,WANG H,CAI W B,et al.Surface plasmon-enhanced photoelectrochemical reaction on metal nanostruc-tures[J].Spectroscopy and Spectral Analysis,2018,38(10):369-370(in Chinese).
参考文献 21
HUANG Y,DENG L P,JU P F,et al.Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres[J].ACS Applied Ma-terials & Interfaces,2018,10(27):23369-23379.
参考文献 22
QIAN H C,XU D K,DU C W,et al.Dual-action smart coatings with a self-healing superhydrophobic surface and an-ti-corrosion properties[J].Journal of Materials Chemistry A,2017,5:2355-2364.
参考文献 23
LI Y,CHEN S S,WU M C,et al.Rapid and efficient mul-tiple healing of flexible conductive films by near-infrared light irradiation[J].ACS Applied Materials Interfaces,2014,6:16409-16415.
目录contents

    摘要

    为了实现涂层破损的高效自修复,将纳米氮化钛与热塑性聚氨酯混合,制备了不同氮化钛含量的复合涂层。 利用扫描电子显微镜(SEM)、X 射线衍射仪(XRD)和紫外可见分光光度计(UV-Vis)分析了氮化钛的结构和光谱吸收特征;利用差示扫描量热仪(DSC)、热电偶、光学显微镜、扫描电子显微镜( SEM)、交流阻抗谱(EIS)等对复合涂层的热力学性能、光热转换性能、自修复性能及防腐性能进行测试。 结果表明:基于纳米氮化钛的表面等离激元特性,在热塑性聚氨酯中添加质量分数为 2%的氮化钛后,复合涂层具有良好的光热转换性能,在近红外激光照射后其表面温度高于聚氨酯的玻璃化转变温度。 当涂层表面有划口时,通过激光照射可以提高涂层的局部温度,使聚合物分子链运动并流向划痕界面,复合涂层的结构和防腐性能均得到恢复,并且修复后涂层中氮化钛仍分布均匀。 此外,氮化钛纳米颗粒还有助于填补涂层的微观孔隙,使复合涂层的防腐性能提高。

    Abstract

    To achieve efficient self-healing of damaged coatings, nanosized titanium nitride (TiN) and thermoplastic polyurethane (TPU) were mixed to prepare composite coatings with different TiN contents. The structure and spectral absorption characteristics of TiN were analyzed by SEM, XRD and UV-Vis spectroscopy (UV-Vis). Thermodynamic property, photothermal conversion performance, self-healing property and corrosion resistance of TiN-TPU composites were tested by differential scanning calorimetry (DSC), thermoelectric couple, optical microscopy, SEM and electrochemical impedance spectroscopy (EIS). Results show that based on the surface plasmon property of TiN, the composite coating exhibits desiable photothermal conversion performance after adding 2% TiN into TPU, and its surface temperature is higher than the glass transition temperature of TPU under near infrared laser irradiation. When there is a scratch on the TiN-TPU surface, its local temperature increases dramatically under laser irradiation, leading to the movement of polymer molecular chain and the self-healing of the scratched interface. The distribution of TiN in the healed coating is still uniform. In addition, TiN nanoparticles help to fill the microscopic pores of the coating and improve the corrosion resistance of the composite film

  • 0 引言

  • 涂层防护技术主要通过物理屏蔽作用,抑制金属基体与腐蚀性介质的直接接触,从而抑制腐蚀电化学反应的发生。 然而,在复杂的服役工况下,涂层不可避免地会产生破损和开裂,逐渐丧失对材料的防护能力。 因此,开发具有修复涂层破损功能的新型智能涂层,有利于延长材料的服役寿命和提高使用可靠性,具有巨大的实用价值和经济效益。

  • 2001 年,White等[1]首次在Nature杂志上提出了自修复(self-healing)聚合物的概念。 当涂层破损时,自修复涂层可以自行修复涂层损伤,恢复其防护性能和延长使用寿命,该方法受到了腐蚀与防护领域的广泛关注。 自修复涂层按修复机理可以分为两类:一类是通过在涂层中构筑微胶囊系统来实现涂层的自修复[2-4],当涂层破损时,修复剂从微胶囊中释放出来并与金属基底接触,形成新的阻隔层,从而自行愈合涂层的损伤界面,该方法的灵敏度高、修复效果较好,但无法实现涂层的重复多次修复,并且完成愈合过程的时间较长。 另一类是通过加热、磁场作用、光照等给体系提供能量,促进涂层的共价或非共价作用,例如Diels-Alder反应[5]、 氢键[6]、 π-π 堆积[7]或离子作用[8],该方法工艺简单、无需复杂的包覆技术,并且修复过程快速、高效,具有巨大的发展潜力。

  • 热塑性材料为线型高分子化合物,在高温条件下高分子链段具有良好的移动能力,使破裂界面处的链段相互接触并发生缠结;冷却后重新固化,通过熔融-固化的过程实现涂层的自我修复功能[9-10]。 由于热塑性涂层的自修复不依赖于愈合剂的释放,因此涂层可以重复多次自修复。 Manas-Zloczower等将环氧树脂与不同比例的热塑性聚氨酯( Thermoplastic polyurethane,TPU)混合,该复合涂层相较于传统的环氧树脂-聚己内酯涂层具有更好的透明度和力学性能,同时,该涂层在80℃ 加热10 min后,涂层的裂纹完全闭合,从而恢复对基底的防护作用[11]。 但是,传统加热方法引起的自修复作用范围有限,加热过程还会破坏材料受损区域以外的涂层结构,造成能源浪费和经济损失。 相比之下,基于光照产热效应的自修复方式具有操作距离远、修复精度和效率高、对周围区域的影响小、 成本低廉等优点, 具有广阔的应用前景。

  • 近年来,研究者发现了等离激元( Plasmonics)纳米结构的光热效应,即利用表面等离子共振(Surface plasmon resonance, SPR)将入射光能转化为热能的产热效应[12-13]。 常见的等离激元材料包括纳米尺度的金、银、铜等贵金属颗粒。Peng等[10]利用金纳米颗粒的光热效应对TPU涂层的划痕进行修复,树脂基体的分子链无需重新设计,在光照时树脂熔融并流向断口处,冷却后重新结晶,该方法可以修复较大尺寸的表面损伤。 但是,贵金属纳米颗粒等光热物质的添加会大大提高涂层的制备成本。 因此,亟需开发新型的高效、高稳定性、均匀性、低成本的光热材料,并将其用于涂层的自修复领域。 与传统的金、银等离激元材料相比,纳米氮化钛( TiN)具有价格低、熔点高、硬度高、化学稳定性和耐蚀性好等优点,并且它比传统贵金属的吸收波长范围宽(在整个可见光及近红外波长范围内)[13-14],吸收损耗低,可以更加高效地利用光能。 然而,目前将纳米氮化钛应用于热塑性涂层自修复的研究尚鲜见报导。

  • 文中将氮化钛纳米颗粒与热塑性聚氨酯相结合,制备具有光热触发自修复功能的智能涂层,研究了氮化钛添加量对涂层的光照产热能力、玻璃化转变温度、防腐性能及自修复性能的影响规律。 通过调控氮化钛的含量和近红外激光的照射时间,实现了涂层的结构和防腐性能的高效自修复, 并探讨了该新型涂层的自修复机理。

  • 1 试验

  • 1.1 主要原料和试剂

  • 氮化钛纳米颗粒( 直径约20 nm, 纯度>99%):上海阿拉丁生化科技股份有限公司;热塑性聚氨酯(TPU):德国巴斯夫公司;N,N-二甲基甲酰胺(N,N-Dimethylformamide,DMF):上海阿拉丁生化科技股份有限公司;无水乙醇(AR级)、氯化钠(AR级):国药集团化学试剂有限公司;Q235 钢:市售。

  • 1.2 样品制备

  • 用106 μm(150 目)和61 μm(240 目)砂纸打磨Q235 钢试样(25 mm×25 mm×2 mm)表面,并用无水乙醇清洗干净备用。 将氮化钛纳米颗粒分散于DMF中,在600 r/min的转速下搅拌40 min使之均匀分散;TPU分散于DMF中。 将1%、2%和3%氮化钛(占涂料的质量分数) 加入TPU中( 记作1%TiN-TPU、 2%TiN-TPU、 3%TiN-TPU),80℃ 下搅拌90 min,使之混合均匀。将上述混合溶液旋涂于Q235 钢试样表面,旋涂速度为400 r/min,旋涂时间为30 s。 在50℃ 的烘箱中固化成膜,干膜厚度约为70 μm,随后对涂层的光热转换性能、电化学性能和自修复性能进行测试。

  • 1.3 测试与表征

  • 1.3.1 微观形貌观察

  • 利用Merlin型蔡司场发射扫描电子显微镜(SEM)观察氮化钛纳米颗粒的形貌,利用X射线衍射仪(XRD)分析氮化钛的物相结构,利用紫外可见分光光度计(UV-Vis) 确定氮化钛的光谱吸收峰位, 利用激光共聚焦显微镜( KEYENCEVK-X200) 和扫描电子显微镜( QUANTA FEG250)观察自修复涂层的表面形貌和涂层破损处的自修复过程。

  • 1.3.2 玻璃化转变温度测试

  • 利用差示扫描量热仪(DSC-Q5000IR)测试涂层的玻璃化转变温度。 选择高纯氮气作为保护气体,升温速率为10℃/min,温度扫描范围为20~100℃。

  • 1.3.3 光热转换性能测试

  • 利用808 nm激光器实现涂层的光照产热和自修复功能。 激光的功率密度为3 W/cm2,光源到涂层表面的距离为5 cm。 为测量涂层的升温效果,将K型热电偶贴合于钢片的背面、激光光斑的正下方,每隔2 s测量基片的温度。

  • 1.3.4 电化学性能测试

  • 将涂层浸泡在质量分数为3.5%的氯化钠溶液中,利用电化学工作站(PARSTAT 2273) 测量涂层试样的交流阻抗谱(EIS)。 采用三电极系统:工作电极为带涂层的Q235 钢试样,参比电极为饱和甘汞电极SCE,辅助电极为铂片,测试频率范围为10-2~105 Hz, 交流正弦波振幅为10 mV。 为表征涂层的自修复性能,用手术刀片在涂层表面划口5 mm,划痕深度达到涂层与金属基底的界面。 之后利用激光照射涂层,使划痕愈合,并分析涂层愈合前后的电化学性能变化。

  • 2 结果与讨论

  • 2.1 纳米氮化钛的结构表征

  • 图1(a) 为纳米氮化钛的扫描电镜形貌,可见氮化钛为球型结构,粒径均匀,平均直径为20~30 nm。 图1(b)为纳米氮化钛的XRD谱,其中36.6°、42.6°、61.8°、74.1°和78.0°的衍射峰分别对应氮化钛的(111)、(200)、(220)、(311)

  • 图1 纳米氮化钛的表征

  • Fig.1 Characterization of TiN nanoparticles

  • 和( 222) 晶面, 表明氮化钛为面心立方结构[15-16]。 图1(c)是氮化钛纳米颗粒的紫外-可见-近红外吸收光谱,氮化钛在700~1000 nm的波长范围内具有很高的吸收强度,有助于光能的高效吸收。

  • 2.2 氮化钛含量对涂层性能的影响

  • 2.2.1 玻璃化转变温度

  • 为了实现涂层缺陷的光热自修复,应首先确定聚合物的玻璃化转变温度(Tg),即由玻璃态转变为高弹态的温度[17-18]。 如图2 所示,TPU、1%TiN-TPU、2%TiN-TPU、3%TiN-TPU涂层的 Tg 均约为60℃,氮化钛的含量没有明显改变涂层的Tg。 这说明分散于聚氨酯中的氮化钛颗粒对基体的结构和热力学性能的影响不大,该复合涂层保持了良好的热塑性[19]。 DSC的测试结果还说明,当涂层的受热温度高于60℃ 时,涂层由固态转变为流动态,即达到了涂层发生自愈合的温度。

  • 图2 不同氮化钛含量的TiN-TPU复合涂层的DSC曲线

  • Fig.2 DSC curves of TiN-TPU composites containing different TiN content

  • 2.2.2 光热转换性能

  • 氮化钛纳米颗粒的光热效应产生于表面等离子共振,SPR的激发显著地增加了“热” 电子(激发电子)的产率[20]。 通过热电子之间的耦合和金属晶格的声子,晶格温度迅速升高并扩散到周围环境。 这个过程中纳米颗粒可以吸收可见光和近红外波长范围内的入射光,并大量产热。为了表征涂层的光照产热性能,利用808 nm的激光器照射涂层的表面,并用紧贴在钢片背面的热电偶测量实时温度。 图3(a)为涂层的升温效果随光照时间的变化规律,可以看出,不同氮化钛含量的TiN-TPU复合涂层的表面温度均随光照时间的增长而升高,并且氮化钛含量越多,涂层的升温效果越明显;涂层的表面温度在最初的40 s内迅速升高,在光照180 s后达到饱和,此时热量的产生与耗散达到平衡;1%TiN-TPU、2%TiN-TPU、3%TiN-TPU涂层的饱和温度分别为53、63 和72℃,后两个温度已经高于TPU的玻璃化转变温度。 作为对照,纯TPU涂层因不含光热物质, 3 min激光照射后其表面温度仅为45℃。 以上结果表明,氮化钛纳米颗粒可以高效地将激光的能量转化为热能,并使涂层的温度升高至其 Tg 以上,有助于实现涂层的自修复功能。为了检测涂层性能的稳定性和可靠性,将TiNTPU复合涂层试样在808 nm激光下进行3 个周期的光照实验。 如图3( b) 所示,在每一个光照产热-室温冷却的过程中,涂层均表现出优异的升温和降温效果,并且在不同循环过程中涂层的温升差异很小,这说明TiN-TPU涂层可以经受长时间的重复激光照射。

  • 图3 TiN-TPU复合涂层的升温效果随光照时间和间隔的变化规律

  • Fig.3 Photothermal effects of TiN-TPU composite coatingsunder illumination and with interval

  • 2.2.3 电化学性能测试

  • 将涂敷有纯TPU涂层和TiN-TPU复合涂层的Q235 钢试样分别浸泡在3.5%氯化钠溶液中,利用电化学工作站对涂层的交流阻抗谱进行测试,结果如图4 所示。 在旋涂了纯TPU涂层后,试样的低频(0.01 Hz)阻抗值从2.5×103 Ω·cm2上升到2.5×108 Ω·cm2,此时的涂层表现出较好的耐腐蚀性能。 在TPU中添加1%~3%的氮化钛后,复合涂层试样的低频阻抗值进一步升高,达到约8.1×108 Ω·cm2,这说明氮化钛的添加有助于填补涂层的微观孔隙[21-22],从而阻隔了工作电极与腐蚀介质的直接接触,使复合涂层的防腐蚀效果显著提高。

  • 图4 Q235 钢、纯TPU涂层试样、1%TiN-TPU、2%TiN-TPU和3%TiN-TPU涂层试样的电化学阻抗谱

  • Fig.4 EIS spectroscopy of Q235 steel, TPU, 1%TiN-TPU, 2%TiN-TPU and 3%TiN-TPU coating samples

  • 由图3 和图4 可知,2%TiN-TPU和3%TiNTPU在808 nm激光照射后的表面温度均可达到TPU的玻璃化转变温度,且这两种复合涂层的防腐蚀性能相当。 在制备过程中还发现,氮化钛的含量较少时,其在聚氨酯中的分散性更好。 综合考虑涂层的光热转换性能和制备工艺可靠性,选择氮化钛质量分数为2%的TiN-TPU复合涂层进行下一步的光热触发自修复实验。

  • 2.3 涂层的光热自修复性能

  • 利用手术刀片在涂层表面进行划口,划口宽度约60 μm,随后利用3 W/cm2 的激光修复涂层缺陷,并且通过光学显微镜和扫描电子显微镜观察TiN-TPU和纯TPU涂层的自修复效果。 如图5 所示,TiN-TPU涂层经60 s的激光照射后,划口聚拢并使裂纹愈合。 对于纯TPU涂层,在激光照射3 min后,裂纹没有明显变化,这说明没有明显升温现象的涂层无法达到自修复目的,氮化钛纳米颗粒是光触发自修复的关键成分。图6(a)~( c) 分别为完整涂层、划痕修复后涂层、多次激光照射后(60 s每次,共5 次)的微观表面形貌和元素分布。 涂层在3 种条件下均保持良好的平整性和均匀的元素分布,并且划痕区域内外没有任何明显的形貌差异和元素偏聚现象[10,18,23],这说明划痕—激光辐照—冷却固化过程不会影响涂层的整体性能,从而保证了涂层在自修复后的综合防护性能。

  • 图5 修复前后的2%TiN-TPU和TPU涂层的光镜照片

  • Fig.5 Optical microscopy images of 2%TiN-TPU and TPU coatings upon scratching and after healing

  • 图6 不同涂层的扫描电镜表面形貌和元素分布

  • Fig.6 SEM images and EDS mapping results of different coatings

  • 图7 为TiN-TPU涂层愈合过程的示意图。分散在涂层中的TiN纳米颗粒由于SPR效应,产生了特异的光照产热性能。 若涂层破损,则可以通过激光照射划痕来提高涂层的局部温度,使聚合物分子链运动并流向划痕界面。 在光源关闭后,涂层温度降低,运动至涂层破损处的聚合物分子链段重新成型并凝固,从而愈合划痕。 与传统的加热方法相比,作为远程刺激的光线更加易于控制、定位精确,并且在应用过程中可以随时打开或关闭,有助于实现树脂的针对性修复,而不会对那些未受损的部分产生明显的影响,这不仅延长了材料的使用寿命,也减少了能源浪费。

  • 图7 TiN-TPU复合涂层的光热自修复示意图

  • Fig.7 Schematic diagram of photothermal self-healing effect on TiN-TPU composite coating

  • 为了确定涂层的划口是否完全愈合,测量修复前后2%TiN-TPU试样的电化学交流阻抗谱。由图8 可知,当涂层被划破后,涂层的阻抗值迅速降低到6.7×104 Ω·cm2,此时大量腐蚀介质渗入涂层,到达涂层与金属底材的界面,使得裂痕处的金属发生腐蚀。 而涂层的划口经光热自修复后,涂层的低频阻抗值重新回到5.5×108 Ω·cm2,该数值与完整涂层的耐腐蚀性能相当。

  • 综上,试验数据结果表明:TiN-TPU复合涂层的结构和防腐性能均得到恢复,通过氮化钛纳米颗粒的光热效应可以完美地修复受损涂层。

  • 图8 2%TiN-TPU涂层在未划口、划口和修复后的电化学阻抗谱

  • Fig.8 EIS spectroscopy of 2%TiN-TPU before scratching,after scratching and after healing

  • 3 结论

  • (1) 将不同质量分数的氮化钛纳米颗粒加入热塑性聚氨酯中,制备具有光热自修复性能的防腐涂层。 随着氮化钛的含量增多,涂层的光热转换性能逐渐升高,达到热塑性聚氨酯的玻璃化转变温度。 氮化钛纳米颗粒还有助于填补涂层的微观孔隙,使复合涂层的防腐性能提高。

  • (2) 2%TiN-TPU试样在808 nm近红外激光照射60 s即可修复涂层的表面划痕,复合涂层的结构和防腐性能均得到恢复,这表明氮化钛纳米颗粒的光热效应可以完美地修复受损涂层。

  • (3) 该自修复涂层具有优异的防腐性能以及通过光热转换快速愈合涂层损伤的能力,在现代涂料工业中具有广阔的应用前景。

  • 参考文献

    • [1] WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Auto-nomic healing of polymer composites [J].Nature,2001,409:794-797.

    • [2] FAN W J,ZHANG Y,LI W H,et al.Multi-level self-heal-ing ability of shape memory polyurethane coating with micro-capsules by induction heating [J].Chemical Engineering Journal,2019,368:1033-1044.

    • [3] 童晓梅,郝芹芹,闫子英,等.纳米 Al2O3 改性三聚氰胺-脲醛自修复微胶囊的制备及应用[J].中国表面工程,2018,31(1):156-164.TONG X M,HAO Q Q,YAN Z Y,et al.Preparation and application of melamine-urea-formaldehyde self-healing mi-crocapsules modified by nano-Al2O3 [J].China Surface En-gineering,2018,31(1):156-164(in Chinese).

    • [4] ZHANG F,JU P F,PAN M Q,et al.Self-healing mecha-nisms in smart protective coatings:A review[J].Corrosion Science,2018,144:74-88.

    • [5] KUANG X,LIU G M,DONG X,et al.Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker[J].Journal of Poly-mer Science,2015,53:2094-2103.

    • [6] 胡先海,李根,咸玉席,等.可自修复的黑色聚氨酯材料的制备与性能研究[J].功能材料,2019,5(50):05128-05137.HU X H,LI G,XIAN Y X,et al.Synthesis and properties of a self-healing black polyurethane[J].Journal of Function-al Materials,2019,5(50):05128-05137(in Chinese).

    • [7] THAKUR V K,KESSLER M R.Self-healing polymer nano-composite materials:A review [J].Polymer,2015,69:369-383.

    • [8] 薛诗山,武元鹏,刘兰芳,等.基于金属离子交联的自修复聚丙烯酸水凝胶[J].高分子材料科学与工程,2018,34(7):15-19.XUE S S,WU Y P,LIU L F,et al.Self-healing poly(acryl-ic acid)hydrogels based on crosslinking of metallic ion[J].Polymer Materials Science & Engineering,2018,34(7):15-19(in Chinese).

    • [9] CHEN J M,FANG L,XU Z Z,et al.Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light [J].Progress in Organic Coatings,2016,101:543-552.

    • [10] PENG P,ZHANG B Y,CAO Z X,et al.Photothermally in-duced scratch healing effects of thermoplastic nanocomposites with gold nanoparticles[J].Composites Science and Tech-nology,2016,133:165-172.

    • [11] XUAN D,BONAB V S,PATEL A,et al.Self-healing epoxy coatings with enhanced properties and facile processability [J].Polymer,2018,147:196-201.

    • [12] CHEN X,CHEN Y T,YAN M,et al.Nanosecond photo-thermal effects in plasmonic nanostructures[J].ACS Nano,2012,6(3):2550-2557.

    • [13] MA L W,WANG J K,ZHAO F T,et al.Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications [J].Composites Science and Technology,2019,181:107696.

    • [14] REN P,YANG X C.Synthesis and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation[J].Solar RRL,2018,2:1700233.

    • [15] ISHII S,UTO K,NIIYAMA E,et al.Hybridizing Poly(ε-caprolactone)and plasmonic titanium nitride nanoparticles for broadband photoresponsive shape memory films[J].ACS Applied Materials & Interfaces,2016,8:5634-5640.

    • [16] 邵涛,孙德恩,梁斐珂,等.离子源循环轰击对磁控溅射TiN薄膜结构和电学性能的影响[J].中国表面工程,2017,30(1):77-82.SHAO T,SUN D E,LIANG F K,et al.Effects of ion source cycle bombardment on structure and electrical properties of TiN films prepared by magnetron sputtering[J].China Sur-face Engineering,2017,30(1):77-82(in Chinese).

    • [17] FANG L,CHEN J M,ZOU Y T,et al.Self-healing epoxy coatings via focused sunlight based on photothermal effect [J].Macromolecular Materials and Engineering,2017,302:1700059.

    • [18] HUANG L,YI N B,WU Y P,et al.Multichannel and re-peatable self-healing of mechanical enhanced graphene-ther-moplastic polyurethane composites[J].Advanced Materials,2013,25:2224-2228.

    • [19] XU X H,FAN P D,REN J,et al.Self-healing thermoplastic polyurethane(TPU)/polycaprolactone(PCL)/multi-wall car-bon nanotubes(MWCNTs)blend as shape-memory composites [J].Composites Science and Technology,2018,168:255-262.

    • [20] 张檬,王寒,蔡文斌,等.金属纳米结构表面等离激元共振增强光电化学反应[J].光谱学与光谱分析,2018,38(10):369-370.ZHANG M,WANG H,CAI W B,et al.Surface plasmon-enhanced photoelectrochemical reaction on metal nanostruc-tures[J].Spectroscopy and Spectral Analysis,2018,38(10):369-370(in Chinese).

    • [21] HUANG Y,DENG L P,JU P F,et al.Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres[J].ACS Applied Ma-terials & Interfaces,2018,10(27):23369-23379.

    • [22] QIAN H C,XU D K,DU C W,et al.Dual-action smart coatings with a self-healing superhydrophobic surface and an-ti-corrosion properties[J].Journal of Materials Chemistry A,2017,5:2355-2364.

    • [23] LI Y,CHEN S S,WU M C,et al.Rapid and efficient mul-tiple healing of flexible conductive films by near-infrared light irradiation[J].ACS Applied Materials Interfaces,2014,6:16409-16415.

  • 参考文献

    • [1] WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Auto-nomic healing of polymer composites [J].Nature,2001,409:794-797.

    • [2] FAN W J,ZHANG Y,LI W H,et al.Multi-level self-heal-ing ability of shape memory polyurethane coating with micro-capsules by induction heating [J].Chemical Engineering Journal,2019,368:1033-1044.

    • [3] 童晓梅,郝芹芹,闫子英,等.纳米 Al2O3 改性三聚氰胺-脲醛自修复微胶囊的制备及应用[J].中国表面工程,2018,31(1):156-164.TONG X M,HAO Q Q,YAN Z Y,et al.Preparation and application of melamine-urea-formaldehyde self-healing mi-crocapsules modified by nano-Al2O3 [J].China Surface En-gineering,2018,31(1):156-164(in Chinese).

    • [4] ZHANG F,JU P F,PAN M Q,et al.Self-healing mecha-nisms in smart protective coatings:A review[J].Corrosion Science,2018,144:74-88.

    • [5] KUANG X,LIU G M,DONG X,et al.Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker[J].Journal of Poly-mer Science,2015,53:2094-2103.

    • [6] 胡先海,李根,咸玉席,等.可自修复的黑色聚氨酯材料的制备与性能研究[J].功能材料,2019,5(50):05128-05137.HU X H,LI G,XIAN Y X,et al.Synthesis and properties of a self-healing black polyurethane[J].Journal of Function-al Materials,2019,5(50):05128-05137(in Chinese).

    • [7] THAKUR V K,KESSLER M R.Self-healing polymer nano-composite materials:A review [J].Polymer,2015,69:369-383.

    • [8] 薛诗山,武元鹏,刘兰芳,等.基于金属离子交联的自修复聚丙烯酸水凝胶[J].高分子材料科学与工程,2018,34(7):15-19.XUE S S,WU Y P,LIU L F,et al.Self-healing poly(acryl-ic acid)hydrogels based on crosslinking of metallic ion[J].Polymer Materials Science & Engineering,2018,34(7):15-19(in Chinese).

    • [9] CHEN J M,FANG L,XU Z Z,et al.Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light [J].Progress in Organic Coatings,2016,101:543-552.

    • [10] PENG P,ZHANG B Y,CAO Z X,et al.Photothermally in-duced scratch healing effects of thermoplastic nanocomposites with gold nanoparticles[J].Composites Science and Tech-nology,2016,133:165-172.

    • [11] XUAN D,BONAB V S,PATEL A,et al.Self-healing epoxy coatings with enhanced properties and facile processability [J].Polymer,2018,147:196-201.

    • [12] CHEN X,CHEN Y T,YAN M,et al.Nanosecond photo-thermal effects in plasmonic nanostructures[J].ACS Nano,2012,6(3):2550-2557.

    • [13] MA L W,WANG J K,ZHAO F T,et al.Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications [J].Composites Science and Technology,2019,181:107696.

    • [14] REN P,YANG X C.Synthesis and photo-thermal conversion properties of hierarchical titanium nitride nanotube mesh for solar water evaporation[J].Solar RRL,2018,2:1700233.

    • [15] ISHII S,UTO K,NIIYAMA E,et al.Hybridizing Poly(ε-caprolactone)and plasmonic titanium nitride nanoparticles for broadband photoresponsive shape memory films[J].ACS Applied Materials & Interfaces,2016,8:5634-5640.

    • [16] 邵涛,孙德恩,梁斐珂,等.离子源循环轰击对磁控溅射TiN薄膜结构和电学性能的影响[J].中国表面工程,2017,30(1):77-82.SHAO T,SUN D E,LIANG F K,et al.Effects of ion source cycle bombardment on structure and electrical properties of TiN films prepared by magnetron sputtering[J].China Sur-face Engineering,2017,30(1):77-82(in Chinese).

    • [17] FANG L,CHEN J M,ZOU Y T,et al.Self-healing epoxy coatings via focused sunlight based on photothermal effect [J].Macromolecular Materials and Engineering,2017,302:1700059.

    • [18] HUANG L,YI N B,WU Y P,et al.Multichannel and re-peatable self-healing of mechanical enhanced graphene-ther-moplastic polyurethane composites[J].Advanced Materials,2013,25:2224-2228.

    • [19] XU X H,FAN P D,REN J,et al.Self-healing thermoplastic polyurethane(TPU)/polycaprolactone(PCL)/multi-wall car-bon nanotubes(MWCNTs)blend as shape-memory composites [J].Composites Science and Technology,2018,168:255-262.

    • [20] 张檬,王寒,蔡文斌,等.金属纳米结构表面等离激元共振增强光电化学反应[J].光谱学与光谱分析,2018,38(10):369-370.ZHANG M,WANG H,CAI W B,et al.Surface plasmon-enhanced photoelectrochemical reaction on metal nanostruc-tures[J].Spectroscopy and Spectral Analysis,2018,38(10):369-370(in Chinese).

    • [21] HUANG Y,DENG L P,JU P F,et al.Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres[J].ACS Applied Ma-terials & Interfaces,2018,10(27):23369-23379.

    • [22] QIAN H C,XU D K,DU C W,et al.Dual-action smart coatings with a self-healing superhydrophobic surface and an-ti-corrosion properties[J].Journal of Materials Chemistry A,2017,5:2355-2364.

    • [23] LI Y,CHEN S S,WU M C,et al.Rapid and efficient mul-tiple healing of flexible conductive films by near-infrared light irradiation[J].ACS Applied Materials Interfaces,2014,6:16409-16415.

  • 手机扫一扫看