en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

陈志国(1969—),男(汉),教授,博士;研究方向:材料先进成形;E-mail:hngary@163.com

中图分类号:TG174.44

文献标识码:A

文章编号:1007-9289(2020)01-0117-08

DOI:10.11933/j.issn.1007-9289.20190128001

参考文献 1
JIAN Y X,HUANG Z F,XING J D,et al.Effect of impro-ving Fe2B toughness by chromium addition on the two-body abrasive wear behavior of Fe-3.0wt% B cast alloy[J].Tri-bology International,2016,101:331-339.
参考文献 2
DENG S Y,ZHAO J S,ZHU C Y,et al.Theoretical study of electronic and mechanical properties of Fe2B [J].RSC Advances,2016,6:73576-73580.
参考文献 3
XIAO B,XING J D,DING S F,et al.Stability,electronic and mechanical properties of Fe2B [J].Physica B:Con-densed Matter,2008,403(10-11):1723-1730.
参考文献 4
TEPLYKH A,GOLKOVSKIY M,BATAEV A,et al.Boride coatings structure and properties,produced by atmospheric e-lectron-beam cladding [J].Advanced Materials Research,2011,287-290:26-31.
参考文献 5
XIAO B,XING J D,FENG J,et al.A comparative study of Cr7C3,Fe2C and Fe2B in cast iron both from ab initio calcu-lations and experiments[J].Physics D:Applied Physics,2009,42(11):115415-115431.
参考文献 6
OZDEMIR O,USTA M,BINDAL C,et al.Hard iron boride(Fe2B)on 99.97wt% pure iron [J].Vacuum,2006,80(11):1391-1395.
参考文献 7
JIANG J B,WANG Y,ZHANG Q D,et al.Preparation of Fe2B boride coating on low-carbon steel surfaces and its eval-uation of hardness and corrosion resistance [J].Surface and Coatings Technology,2011,206(2-3):473-478.
参考文献 8
KRIVEZHENKO D S,LAPTEV I S,ZIMOGLYADOVA T A.Electron-beam cladding of boron carbide on low-alloyed steel at the air atmosphere[J].Applied Mechanics and Ma-terials,2014,698:369-373.
参考文献 9
TEPLYKH A,GOLKOVSKIY M,BATAEV A,et al.Boride coatings structure and properties,produced by atmospheric e-lectron-beam cladding [J].Advanced Materials Research,2011,287-290:26-31.
参考文献 10
MEHMET Y.In situ formation of square shaped Fe2B borides in coated surface produced by GTAW[J].Optoelectronics and Advanced Materials,2013,15(9-10):1037-1046.
参考文献 11
BUSHUEVA E G,GRINBERG B E,BATAEV V A,et al.Raising the resistance of chromium-nickel steel to hydroabra-sive wear by non-vacuum electron-beam cladding with boron [J].Metal Science and Heat Treatment,2019,60(9-10):641-644.
参考文献 12
OLIVEIRA U D,OCELÍK V,HOSSON J T M D.Analysis of coaxial laser cladding processing conditions[J].Surface and Coatings Technology,2005,197(2-3):127-136.
参考文献 13
DU B,ZOU Z,WANG X,et al.In situ synthesis of TiB2/Fe composite coating by laser cladding [J].Materials Let-ters,2008,62(45):689-691.
参考文献 14
SHEPELEVA L,MEDRES B,KAPLAN W D,et al.Laser cladding of turbine blades[J].Surface and Coatings Tech-nology,2000,125(1-3):45-48.
参考文献 15
BORGES B,QUINTINO L,MIRANDA R M,et al.Imper-fections in laser clading with powder and wire fillers [J].Advanced Manufacturing Technology,2010,50(1-4):175-183.
参考文献 16
TOYSERKANI E,KHAJEPOUR A,CORBIN S.Laser clad-ding[M].Florida:CRC Press,2005:8-12.
参考文献 17
ANSARI M,MOHAMADIZADEH A,HUANG Y,et al.La-ser directed energy deposition of water-atomized iron powder:Process optimization and microstructure of single-tracks[J].Optics and Laser Technology,2019,112:485-493.
参考文献 18
BOURAHIMA F,HELBERT A L,REGE M,et al.Laser cladding of Ni based powder on a Cu-Ni-Al glassmold:Influ-ence of the process parameters on bonding quality and coating geometry [J].Journal of Alloys and Compounds,2019,771:1018-1028.
参考文献 19
SHABADI R,IONESCU M,JEANDIN M,et al.Cladding of stellite-6/WC composites coatings by laser metal deposition [J].Materials Science Forum,2018,941:1645-1650.
参考文献 20
李嘉宁,刘科高,张元彬,等.激光熔覆技术及应用 [M].北京:化学工业出版社,2016:56-57.LI J L,LIU K G,ZHANG Y B,et al.Laser cladding tech-nology and application [ M ].Beijing:Chemical Industry Press,2016:56-57(in Chinese).
参考文献 21
LUO F,YAO J H,XIA-XIA H U,et al.Effect of laser pow-er on the cladding temperature field and the heat affected zone[J].Journal of Iron and Steel Research International,2011,18(1):73-78.
参考文献 22
魏祥,陈志国,钟掘,等.沉积气氛对电火花沉积Mo2FeB2基金属陶瓷涂层组织与性能的影响[J].稀有金属材料与工程,2018,47(4):1199-1204.WEI X,CHEN Z G,ZHONG J,et al.Influence of deposi-tion atmosphere on structure and properties of Mo2FeB2-based cermet coatings produced by electro-spark deposition [J].Rare Metal Materials and Engineering,2018,47(4):1199-1204(in Chinese).
目录contents

    摘要

    利用粉末喷射激光熔覆以球形硼铁粉末为原材料成功制备了 Fe2B 金属间化合物涂层。 采用金相显微镜 (OM)、 X 射线衍射仪 (XRD)、 扫描电镜 ( SEM)、 电子探针 (EPMA)、 显微维氏硬度计及摩擦磨损试验机对涂层的组织与性能进行了表征。 结果表明: 当激光比能控制在 3. 00×10 8 kJ/ m 2 左右时, 采用粉末喷射激光熔覆能制备较为理想的 Fe2B 金属间化合物涂层。 制备的单层涂层的物相为 Fe2B 与 Fe, 显微硬度峰值达 1360 HV0. 05 , 涂层组织中大量弥散分布的 Fe2B 相的生成是涂层具有高硬度的原因。 制备的多层涂层与基体具有良好的冶金结合, 从基体到涂层, 组织经历了一个由平面外延生长组织到胞状晶再到等轴晶的演变过程, 涂层稳定摩擦因数为 0. 385, 磨损率为 5. 67×10 -15 m 3 / N·m,表现出良好的耐磨性能, 磨损机制为磨粒磨损与疲劳磨损。

    Abstract

    With spherical ferroboron alloy powder as raw material, the Fe2B intermetallic coatings were successfully prepared by powder injection laser cladding. Microstructure and properties of the coatings were analyzed by employing metallographic microscope (OM), X-ray diffracton (XRD), scanning electron microscopy (SEM), electron probe microanalysis (EPMA), micro Vickers hardness tester and friction wear tester. Results show that when the laser specific energy was controlled at about 3. 00×10 8 kJ/ m 2 , a more desirable Fe2B intermetallic compound coating could be prepared. The phases of the prepared monolayer coating were Fe2B and Fe, and the peak microhardness reached 1360 HV0. 05 . The formation of a large number of dispersed Fe2B phases in the coating microstructure contributed to the high hardness of the coating. The metallurgical bond between the prepared multilayer coating and substrate was well realized. From substrate to coating, the microstructure had experienced an evolution process from planar epitaxial growth microstructure to cellular-like crystal and then to equiaxed crystal. The coating had good wear-resisting property, with stable friction coefficient of 0. 385 and wear rate of 5. 67×10 -15 m 3 / Nm. And its wear mechanism was abrasive wear and fatigue wear.

  • 0 引言

  • Fe2B是一种典型的金属间化合物,具有硬度高、热稳定性好、耐磨耐蚀性强等优点[1-4]。 Fe2B仅含Fe和B两种来源广泛且廉价的元素,却具有与高铬碳化物Cr7C3 相当的硬度,是一种极具发展潜力和研究价值的材料[5],常被应用于表面耐磨层和块体耐磨材料中。

  • 渗硼是一种传统的制备Fe2B耐磨层的表面强化工艺[6-7], 但该工艺存在加工温度较高(800~1000℃)、加工时间较长(3~16 h)、处理零件的尺寸受限制等缺点[8-9]。 近年来,相继报道了一些新兴的表面改性技术进行表面硼化处理的相关研究。 Mehmet等[10] 采用GTAW工艺,在低碳钢表面制备了Fe2B与石墨复合涂层; Bushueva等[11]采用非真空电子束熔覆技术在铬镍奥氏体钢12Kh18N9T上制备了Fe2B耐磨涂层。

  • 与上述表面改性技术相比,激光熔覆具有功率密度高(10 4~10 6W/cm 2)、冷却速度快(10 4~10 6 k/s)等优势,可制备稀释率更低、组织细化程度更高的与基体呈良好冶金结合的致密涂层[12-15]。 目前应用最广泛的激光熔覆方法是粉末喷射激光熔覆,由于激光扫描与粉末喷射同时进行的特性,使得其可实现柔性加工,因此得到了国内外的广泛关注,相关研究主要集中在涂层制备,修复再制造、工艺设计以及仿真模拟[16]。 Ansari等[17]采用粉末喷射激光熔覆在不同工艺参数条件下制备了铁基单道涂层,研究表明,单道的几何特性与工艺参数有较高的相关性。 Bourahima等[18]使用优化的参数组合在非平面模具上制备了无孔无裂纹、稀释区非常小、冶金结合良好的铜镍铝合金粉末喷射激光熔覆涂层。 Shabadi等[19]采用粉末喷射激光熔覆在S45C基体上成功制备了Stellite-6/WC复合材料涂层,涂层提高了基体的耐磨、耐腐蚀性能。

  • 然而,迄今有关粉末喷射激光熔覆制备Fe2B金属间化合物涂层的研究却鲜见报道。 试验采用粉末喷射激光熔覆工艺,通过调整激光功率与扫描速度来控制激光熔覆过程的激光比能,制备了Fe2B金属间化合物涂层。 研究了激光比能对单道、单层涂层微观组织的影响规律。 并基于优化的激光比能,制备了多层涂层,研究了多层涂层的微观组织与性能。

  • 1 试验

  • 1.1 样品制备

  • 使用JC-LMD200-6 激光金属沉积系统制备涂层,该系统配备了500 W光纤激光器,转速可控的旋转式粉缸等。 采用铁硼原子比约为2 ∶1的球型硼铁粉末作为原材料。 选用Ar气( 纯度99.99%)作为保护气和送粉气。 基体材料为45 钢,尺寸为70 mm×50 mm×7 mm。

  • 基体经打磨、抛光以及清洗后,安装在数字驱动的x-y平台上,使用高能量密度的激光对基体表面进行加热,迅速形成金属熔池。 同时,金属粉末经粉末喷嘴注入熔池。 基体相对激光束作水平移动,实现熔池的快速加热与快速冷却; 完成一层熔覆后,平台竖直下移一段距离,重复以上过程直至熔覆试验结束。 图1 为粉末喷射激光熔覆示意图。

  • 图1 粉末喷射激光熔覆示意图

  • Fig.1 Schematic diagram of powder injection laser cladding

  • 由于激光熔覆主要靠调整激光功率 P,扫描速度 v 和激光光斑直径 D 等3 个参数来控制。 因此,为说明三者的综合作用,引入激光比能 E, 即单位面积的辐照能量[20] :

  • E=P/(D×v)
    (1)
  • 式中, E 为激光比能,kJ/m 2; P(W)为激光功率, v 为扫描速度,mm/s; D 为激光光斑直径, mm。

  • 在此研究的激光熔覆试验中,激光焦点与基板表面距离即离焦量设置为5 mm,保护气与送粉气流量均设置为6 L/min,激光光斑直径设置为0.1 mm, 相邻熔覆道间的偏移量设置为0.16 mm。 并通过调整激光功率和激光扫描速度设计了6 个具有不同激光比能的激光熔覆试验,如表1 所示。

  • 表1 激光熔覆的试验设计

  • Table1 Experiment design of laser cladding

  • 1.2 微观组织表征及力学性能测试

  • 使用磨样机对样品进行研磨和抛光,然后采用超声波清洗仪对样品进行清洁,随后在干燥箱中保存。 使用4%硝酸酒精溶液腐蚀样品20 s,经丙酮溶液清洗后,吹干。

  • 采用光学显微镜观察涂层横截面整体形貌;采用D/Max-2500 型X射线衍射仪分析涂层的物相组成;采用FEI Quanta-200 环境扫描电镜观察涂层的微观组织结构;采用JXA-8230 电子探针显微分析仪对涂层进行化学成分分析。

  • 涂层的截面硬度通过MK-VK型显微维氏硬度计测量,预定载荷为50 g,保压时间为10 s;采用HSR-2M摩擦试验机进行室温往复干滑动摩擦试验,载荷50 N,频率5 Hz,摩擦时间30 min,摩擦行程5 mm,摩擦副为SiC球(直径6 mm,洛氏硬度80 HRC),摩擦因数由外带的计算机自动采集。 磨痕截面积使用轮廓仪进行测量。 磨损率利用下式计算:

  • W=V/(S×F)
    (2)
  • 式中, W 为磨损率,m3/Nm; V 为磨损体积,m3; S 为总滑动行程,m; F 为载荷,N。

  • 2 结果与讨论

  • 2.1 激光比能对Fe2B单道涂层微观组织的影响

  • 图2 为不同激光比能下制备的Fe2B单道涂层截面形貌。 可见,除图2( a) 仅存在单一的热影响区(Heat affected zone,HAZ)外;其余单道涂层均具有完整的熔覆形貌:熔覆区(Clading zone,CZ)、过渡区(Trasition zone,TZ)与热影响区。 对比图2 中的各涂层截面形貌发现,随着激光比能的增大,熔覆区熔深、熔宽以及热影响区均扩大。另外,图2(f)中涂层出现了一道贯穿熔覆区的裂纹,这显然会对激光熔覆涂层的性能产生不利影响,应尽量避免。

  • 图2 不同激光比能下Fe2B单道涂层截面形貌(OM)

  • Fig.2 Cross section morphologies of Fe2B single pass coating under different laser specific energy(OM)

  • 经分析,45 钢基体熔点在1495℃左右,当激光比能过小时,单位面积辐照能量过小,基体未熔化从而不能形成熔池,金属粉末难以熔化而被保护气体吹散,故仅在基体表面形成了一个较小的热影响区;随着激光比能的增加,基体经激光辐照熔化而形成金属熔池,粉末经激光快速加热熔融并被熔池捕获,熔池表面存在表面张力梯度,这个表面张力梯度,作为熔池中对流的驱动力,促使合金元素搅拌均匀,最终获得成分均匀的熔覆区。 而且,激光比能越大,基体产生的熔池越大, 粉末熔化量越多, 因而熔覆区也随之增大。

  • 另外,由于熔池的散热是不均匀的,越靠近熔池中心冷却速度越慢,致使熔池两端部分首先凝固而对中心部分产生向外的拉应力;当激光比能过大时,注入熔池能量过大,熔覆层中间部位受到两端的拉应力过大,从而导致熔覆层开裂[21]。

  • 综合以上分析, 激光比能设置在3.00 ×108kJ/m2 附近时单道涂层形貌较为理想,更适合进行激光熔覆单层、多层涂层的制备。

  • 2.2 激光比能对Fe2B单层涂层微观组织和硬度的影响

  • 图3 为3 种激光比能(2.00×108、3.00×108和4.00×108kJ/m2) 制备的Fe2B单层涂层截面SEM形貌。 如图所示,3 种涂层与基体之间均具有明显的过渡区,呈现出冶金结合的特征,涂层组织结构致密,基本无孔洞。 对比3 种涂层,图3(a)(b)涂层厚度相差并不大,但是图3( b)中涂层相对图3(a)来说具有更完整连续的涂层形貌,经分析,当激光比能为2.00×108kJ/m2 时,由于单道熔宽较小,道与道未实现完整搭接,从而使得涂层不连续;随着激光比能进一步增大,单层涂层厚度显著增加,如图3(c)所示。

  • 图3 不同激光比能下激光熔覆Fe2B单层涂层截面形貌(SEM)

  • Fig.3 Cross section morphologies of Fe2B monolayer coating under different laser specific energy(SEM)

  • 图4 为3 种激光比能( 2.00 × 108kJ/m2、3.00×108kJ/m2 与4.00×108kJ/m2)制备的Fe2B单层熔覆层的XRD图谱。 如图所示,当激光比能为2.00×108kJ/m2 和3.00×108kJ/m2 时涂层主要相为Fe2B,该相的主要特征峰均存在,且相对强度很高,此外涂层还存在Fe相。 根据XRD图谱峰面积定性判断, 激光比能为3.00 ×108kJ/m2 制备的涂层相对激光比能为2.00 ×108kJ/m2 制备的涂层含有更多的Fe2B相。 此外,当激光比能为4.00×108kJ/m2 时,涂层除含有Fe2B相和Fe相外,还出现了亚稳相Fe23B6

  • 图5 为3 种激光比能( 2.00 × 108kJ/m2、3.00×108kJ/m2 与4.00×108kJ/m2)制备的Fe2B单层涂层近表面截面微观组织的SEM形貌。图5(a)、( b) 中浅色部分为( Fe + Fe2B) 共晶组

  • 图4 不同激光比能下激光熔覆Fe2B单层涂层XRD图谱

  • Fig.4 XRD patterns of laser cladding Fe2B monolayer coating under different laser specific energy

  • 织,均匀弥散分布的深色组织是Fe2B等轴晶,可以看出,图5(b)中深色组织分布更致密,体积分数更大,这表明激光比能为3.00 × 108kJ/m2 时Fe2B相对含量更多,这与上文中XRD图谱分析结果吻合。 图5( c)为激光比能4.00×108kJ/m2的单层涂层显微组织,主要由浅色枝晶和深色基体部分组成,枝晶大小均匀,排列密集,且沿着温度传导和扩散方向具有一定的方向性。 此外,还可以看出,随着激光比能的增加,涂层中的晶粒尺寸逐渐增大。 更大的激光比能导致激光熔池更慢的冷却速率是晶粒随激光比能增大而长大的原因。

  • 图5 不同激光比能下激光熔覆Fe2B单层涂层微观组织

  • Fig.5 Microstructure of laser cladding Fe2B monolayer coating under different laser specific energy

  • 对3 种涂层(2.00×108kJ/m2、3.00×108kJ/m2与4.00×108kJ/m2) 进行了显微维氏硬度测试,得到的显微硬度峰值分别为1240、 1360 和1047 HV0.05。 结合图4 与图5 分析可得,激光比能为3.00×108kJ/m2 时制备的单层涂层之所以具有更高的硬度,是因为其组织中含有更大体积分数的Fe2B相[8]。

  • 2.3 激光熔覆Fe2B多层涂层的微观组织与性能

  • 2.3.1 微观组织

  • 图6 为激光比能3.00×108kJ/m2 时制备的Fe2B多层涂层的XRD图谱。 如图所示,涂层组织由Fe2B与Fe两相组成,其中Fe2B主要特征峰均存在,且相对强度很高,说明Fe2B相含量远

  • 图6 激光熔覆Fe2B多层涂层的XRD图谱

  • Fig.6 XRD patterns of laser cladding Fe2B multilayercoating

  • 远高于Fe相。

  • 图7 为激光比能3.00×10 8 kJ/m 2 时制备的Fe2B多层涂层截面的微观组织SEM形貌。

  • 图7 激光熔覆Fe2B多层涂层微观组织

  • Fig.7 Microstructure of laser cladding Fe2B multilayer coating

  • 图7(a)所示为涂层近表面组织,Fe2B相具有均匀弥散分布的特点;图7( a) 中箭头所指的区域为异常长大的Fe2B相,其出现位置在道与道搭接、层与层交汇处,即重熔区。 经分析,异常长大是由于反复热循环所致。 图7( b)为涂层与基体的结合区,可见,由基体到涂层,组织经历一个由平面外延生长组织到胞状晶再到等轴晶的演变过程。 另外,同近表面组织类似,在近基体处也出现了重熔区Fe2B相的异常长大。

  • 图8 为激光比能3.00×108kJ/m2 时制备的Fe2B多层涂层成分线扫描。 可见,B元素在涂层与基体结合区经历了一个较为平缓的过渡,并且,由于C,Cr两种元素在过渡区的富集,Fe元素在过渡区的含量明显下降。 这表明涂层与基体发生了原子的互扩散。

  • 图8 激光熔覆Fe2B多层涂层截面线扫描(EPMA)

  • Fig.8 Cross section line scanning of laser cladding Fe2B multilayer coating(EPMA)

  • 2.3.2 显微硬度和摩擦磨损性能

  • 图9 为激光比能3.00×108kJ/m2 时制备的Fe2B多层涂层截面显微硬度分布。 如图所示,硬度曲线呈现明显的梯度变化。 熔覆区的硬度值最高,约为基体的3 倍,最高硬度达到1480 HV0.05 。在过渡区内,涂层硬度值经历了较为平缓的过渡,表明涂层与基体之间具有良好的相容性。 经平缓过渡后,直到基体材料时显微硬度稳定在一个较低的值附近(550 HV0.05 )。

  • 图10 为激光比能3.00×108kJ/m2 时制备的Fe2B多层涂层及基体的摩擦因数曲线。 如图10所示,摩擦因数随着时间的增加先急速上升至最大值,然后缓慢的下降,最后在一个相对稳定的值附近波动,这是因为它们分别经历了摩擦磨损

  • 图9 激光熔覆Fe2B多层涂层截面显微硬度分布

  • Fig.9 Cross section microhardness distribution of laser cladding Fe2B multilayer coating

  • 图10 激光熔覆Fe2B多层涂层及基体的摩擦因数曲线

  • Fig.10 Friction coefficient curves of laser cladding Fe2B multilayer coating and substrate

  • 的起始阶段、过渡阶段和稳定阶段[22]。

  • 在涂层摩擦磨损的起始阶段,涂层表面与SiC摩擦副都是点接触;在过渡阶段时,它们的接触由点接触过渡为面接触;随着摩擦磨损时间的推移,涂层表面与SiC摩擦副的相对摩擦进入稳定阶段,具体表现为摩擦因数的值趋于稳定。 对比基体与涂层稳定阶段的曲线可以看出,涂层的摩擦因数更低。

  • 这是由于基体相对于SiC摩擦副有较低的硬度,当SiC摩擦副凸体部分压入相对较软的基体中,基体表面会产生严重的塑性变形和犁沟,这时的犁削阻力则成为摩擦力的主要分量,因而摩擦因数偏高;涂层表面硬度较高,能够有效地抵抗对磨件的压入及其引起的塑性变形,因此涂层具有更低的摩擦因数。 涂层的稳定摩擦因数约为0.385,而基体的稳定摩擦因数约为0.460。

  • 使用轮廓仪测量了涂层与基体磨痕等间距的5 个截面,并绘制如图11 所示的磨痕截面轮廓图。对比图11 涂层与基体的磨痕截面轮廓图发现,涂层的磨痕深度明显小于基体,同时,根据前文磨损率公式(2) 计算可得涂层与基体的磨损率约为5.67×10-15 m3/N·m和9.47×10-15 m3/N·m。另外,涂层轮廓图出现了黑色箭头所指的异常突起,推测其为磨损所产生的点蚀坑。

  • 图11 激光熔覆Fe2B多层涂层与基体的磨痕截面轮廓

  • Fig.11 Cross section abrasion mark profiles of laser cladding Fe2B multilayer coating and substrate

  • 图12 为Fe2B金属间化合物涂层与基体表面磨损的SEM形貌。 图12( a)为涂层摩擦磨损表面形貌,如图所示,磨损表面出现了剥落和疲劳裂纹,同时可以观察得到浅而平的的犁沟;图12( b)为基体磨损表面形貌,对比涂层,其表面出现了大量宽而深的犁沟和部分塑性变形,相对涂层磨损严重。 经分析可知,由于涂层分布着大量Fe2B硬质相,当一定载荷力作用在涂层表面时,摩擦表面的Fe2B硬质相直接承受载荷,而软的基体起着支撑Fe2B硬质相的作用,并能使硬质相所承受的压力分布均匀,因而涂层磨损表面只观察到轻微的犁沟痕迹。 另外,涂层表面硬质相和基体承受变形的能力不同,在交变接触压应力的作用下易在其结合处萌生裂纹,进而在表面呈现片状剥落或点状剥落。综上可得,激光熔覆Fe2B金属间化合物涂层表现出了良好的摩擦磨损性能,且其磨损机制为磨粒磨损与疲劳磨损。

  • 图12 激光熔覆Fe2B多层涂层与基体的摩擦磨损表面形貌

  • Fig.12 Friction and wear surface morphologies of laser cladding Fe2B multilayer coating and substrate

  • 3 结论

  • (1)采用粉末喷射激光熔覆以球形硼铁粉末为材料成功制备了Fe2B金属间化合物涂层,激光比能设置在3.00×108kJ/m2 附近较为理想,更适合进行激光熔覆涂层的制备,制备得到的单层涂层主要相为Fe2B,且相对含量很高,此外还存在Fe相,涂层显微硬度峰值为1360 HV0.05,涂层组织中大量弥散分布的Fe2B相的生成是涂层具有高硬度的原因。

  • (2)在激光比能为3.00×108kJ/m2 条件下,制备的Fe2B金属间化合物多层涂层,由Fe2B和Fe两相组成,由基体到涂层,组织经历一个由平面外延生长组织到胞状晶再到等轴晶的演变过程。

  • (3)在激光比能为3.00×108kJ/m2 条件下,Fe2B金属间化合物多层涂层与基体具有良好的冶金结合,涂层稳定摩擦因数为0.385,磨损率为5.67×10-15 m3/N·m,表现出了良好的摩擦磨损性能,磨损机制为磨粒磨损与疲劳磨损。

  • 参考文献

    • [1] JIAN Y X,HUANG Z F,XING J D,et al.Effect of impro-ving Fe2B toughness by chromium addition on the two-body abrasive wear behavior of Fe-3.0wt% B cast alloy[J].Tri-bology International,2016,101:331-339.

    • [2] DENG S Y,ZHAO J S,ZHU C Y,et al.Theoretical study of electronic and mechanical properties of Fe2B [J].RSC Advances,2016,6:73576-73580.

    • [3] XIAO B,XING J D,DING S F,et al.Stability,electronic and mechanical properties of Fe2B [J].Physica B:Con-densed Matter,2008,403(10-11):1723-1730.

    • [4] TEPLYKH A,GOLKOVSKIY M,BATAEV A,et al.Boride coatings structure and properties,produced by atmospheric e-lectron-beam cladding [J].Advanced Materials Research,2011,287-290:26-31.

    • [5] XIAO B,XING J D,FENG J,et al.A comparative study of Cr7C3,Fe2C and Fe2B in cast iron both from ab initio calcu-lations and experiments[J].Physics D:Applied Physics,2009,42(11):115415-115431.

    • [6] OZDEMIR O,USTA M,BINDAL C,et al.Hard iron boride(Fe2B)on 99.97wt% pure iron [J].Vacuum,2006,80(11):1391-1395.

    • [7] JIANG J B,WANG Y,ZHANG Q D,et al.Preparation of Fe2B boride coating on low-carbon steel surfaces and its eval-uation of hardness and corrosion resistance [J].Surface and Coatings Technology,2011,206(2-3):473-478.

    • [8] KRIVEZHENKO D S,LAPTEV I S,ZIMOGLYADOVA T A.Electron-beam cladding of boron carbide on low-alloyed steel at the air atmosphere[J].Applied Mechanics and Ma-terials,2014,698:369-373.

    • [9] TEPLYKH A,GOLKOVSKIY M,BATAEV A,et al.Boride coatings structure and properties,produced by atmospheric e-lectron-beam cladding [J].Advanced Materials Research,2011,287-290:26-31.

    • [10] MEHMET Y.In situ formation of square shaped Fe2B borides in coated surface produced by GTAW[J].Optoelectronics and Advanced Materials,2013,15(9-10):1037-1046.

    • [11] BUSHUEVA E G,GRINBERG B E,BATAEV V A,et al.Raising the resistance of chromium-nickel steel to hydroabra-sive wear by non-vacuum electron-beam cladding with boron [J].Metal Science and Heat Treatment,2019,60(9-10):641-644.

    • [12] OLIVEIRA U D,OCELÍK V,HOSSON J T M D.Analysis of coaxial laser cladding processing conditions[J].Surface and Coatings Technology,2005,197(2-3):127-136.

    • [13] DU B,ZOU Z,WANG X,et al.In situ synthesis of TiB2/Fe composite coating by laser cladding [J].Materials Let-ters,2008,62(45):689-691.

    • [14] SHEPELEVA L,MEDRES B,KAPLAN W D,et al.Laser cladding of turbine blades[J].Surface and Coatings Tech-nology,2000,125(1-3):45-48.

    • [15] BORGES B,QUINTINO L,MIRANDA R M,et al.Imper-fections in laser clading with powder and wire fillers [J].Advanced Manufacturing Technology,2010,50(1-4):175-183.

    • [16] TOYSERKANI E,KHAJEPOUR A,CORBIN S.Laser clad-ding[M].Florida:CRC Press,2005:8-12.

    • [17] ANSARI M,MOHAMADIZADEH A,HUANG Y,et al.La-ser directed energy deposition of water-atomized iron powder:Process optimization and microstructure of single-tracks[J].Optics and Laser Technology,2019,112:485-493.

    • [18] BOURAHIMA F,HELBERT A L,REGE M,et al.Laser cladding of Ni based powder on a Cu-Ni-Al glassmold:Influ-ence of the process parameters on bonding quality and coating geometry [J].Journal of Alloys and Compounds,2019,771:1018-1028.

    • [19] SHABADI R,IONESCU M,JEANDIN M,et al.Cladding of stellite-6/WC composites coatings by laser metal deposition [J].Materials Science Forum,2018,941:1645-1650.

    • [20] 李嘉宁,刘科高,张元彬,等.激光熔覆技术及应用 [M].北京:化学工业出版社,2016:56-57.LI J L,LIU K G,ZHANG Y B,et al.Laser cladding tech-nology and application [ M ].Beijing:Chemical Industry Press,2016:56-57(in Chinese).

    • [21] LUO F,YAO J H,XIA-XIA H U,et al.Effect of laser pow-er on the cladding temperature field and the heat affected zone[J].Journal of Iron and Steel Research International,2011,18(1):73-78.

    • [22] 魏祥,陈志国,钟掘,等.沉积气氛对电火花沉积Mo2FeB2基金属陶瓷涂层组织与性能的影响[J].稀有金属材料与工程,2018,47(4):1199-1204.WEI X,CHEN Z G,ZHONG J,et al.Influence of deposi-tion atmosphere on structure and properties of Mo2FeB2-based cermet coatings produced by electro-spark deposition [J].Rare Metal Materials and Engineering,2018,47(4):1199-1204(in Chinese).

  • 参考文献

    • [1] JIAN Y X,HUANG Z F,XING J D,et al.Effect of impro-ving Fe2B toughness by chromium addition on the two-body abrasive wear behavior of Fe-3.0wt% B cast alloy[J].Tri-bology International,2016,101:331-339.

    • [2] DENG S Y,ZHAO J S,ZHU C Y,et al.Theoretical study of electronic and mechanical properties of Fe2B [J].RSC Advances,2016,6:73576-73580.

    • [3] XIAO B,XING J D,DING S F,et al.Stability,electronic and mechanical properties of Fe2B [J].Physica B:Con-densed Matter,2008,403(10-11):1723-1730.

    • [4] TEPLYKH A,GOLKOVSKIY M,BATAEV A,et al.Boride coatings structure and properties,produced by atmospheric e-lectron-beam cladding [J].Advanced Materials Research,2011,287-290:26-31.

    • [5] XIAO B,XING J D,FENG J,et al.A comparative study of Cr7C3,Fe2C and Fe2B in cast iron both from ab initio calcu-lations and experiments[J].Physics D:Applied Physics,2009,42(11):115415-115431.

    • [6] OZDEMIR O,USTA M,BINDAL C,et al.Hard iron boride(Fe2B)on 99.97wt% pure iron [J].Vacuum,2006,80(11):1391-1395.

    • [7] JIANG J B,WANG Y,ZHANG Q D,et al.Preparation of Fe2B boride coating on low-carbon steel surfaces and its eval-uation of hardness and corrosion resistance [J].Surface and Coatings Technology,2011,206(2-3):473-478.

    • [8] KRIVEZHENKO D S,LAPTEV I S,ZIMOGLYADOVA T A.Electron-beam cladding of boron carbide on low-alloyed steel at the air atmosphere[J].Applied Mechanics and Ma-terials,2014,698:369-373.

    • [9] TEPLYKH A,GOLKOVSKIY M,BATAEV A,et al.Boride coatings structure and properties,produced by atmospheric e-lectron-beam cladding [J].Advanced Materials Research,2011,287-290:26-31.

    • [10] MEHMET Y.In situ formation of square shaped Fe2B borides in coated surface produced by GTAW[J].Optoelectronics and Advanced Materials,2013,15(9-10):1037-1046.

    • [11] BUSHUEVA E G,GRINBERG B E,BATAEV V A,et al.Raising the resistance of chromium-nickel steel to hydroabra-sive wear by non-vacuum electron-beam cladding with boron [J].Metal Science and Heat Treatment,2019,60(9-10):641-644.

    • [12] OLIVEIRA U D,OCELÍK V,HOSSON J T M D.Analysis of coaxial laser cladding processing conditions[J].Surface and Coatings Technology,2005,197(2-3):127-136.

    • [13] DU B,ZOU Z,WANG X,et al.In situ synthesis of TiB2/Fe composite coating by laser cladding [J].Materials Let-ters,2008,62(45):689-691.

    • [14] SHEPELEVA L,MEDRES B,KAPLAN W D,et al.Laser cladding of turbine blades[J].Surface and Coatings Tech-nology,2000,125(1-3):45-48.

    • [15] BORGES B,QUINTINO L,MIRANDA R M,et al.Imper-fections in laser clading with powder and wire fillers [J].Advanced Manufacturing Technology,2010,50(1-4):175-183.

    • [16] TOYSERKANI E,KHAJEPOUR A,CORBIN S.Laser clad-ding[M].Florida:CRC Press,2005:8-12.

    • [17] ANSARI M,MOHAMADIZADEH A,HUANG Y,et al.La-ser directed energy deposition of water-atomized iron powder:Process optimization and microstructure of single-tracks[J].Optics and Laser Technology,2019,112:485-493.

    • [18] BOURAHIMA F,HELBERT A L,REGE M,et al.Laser cladding of Ni based powder on a Cu-Ni-Al glassmold:Influ-ence of the process parameters on bonding quality and coating geometry [J].Journal of Alloys and Compounds,2019,771:1018-1028.

    • [19] SHABADI R,IONESCU M,JEANDIN M,et al.Cladding of stellite-6/WC composites coatings by laser metal deposition [J].Materials Science Forum,2018,941:1645-1650.

    • [20] 李嘉宁,刘科高,张元彬,等.激光熔覆技术及应用 [M].北京:化学工业出版社,2016:56-57.LI J L,LIU K G,ZHANG Y B,et al.Laser cladding tech-nology and application [ M ].Beijing:Chemical Industry Press,2016:56-57(in Chinese).

    • [21] LUO F,YAO J H,XIA-XIA H U,et al.Effect of laser pow-er on the cladding temperature field and the heat affected zone[J].Journal of Iron and Steel Research International,2011,18(1):73-78.

    • [22] 魏祥,陈志国,钟掘,等.沉积气氛对电火花沉积Mo2FeB2基金属陶瓷涂层组织与性能的影响[J].稀有金属材料与工程,2018,47(4):1199-1204.WEI X,CHEN Z G,ZHONG J,et al.Influence of deposi-tion atmosphere on structure and properties of Mo2FeB2-based cermet coatings produced by electro-spark deposition [J].Rare Metal Materials and Engineering,2018,47(4):1199-1204(in Chinese).

  • 手机扫一扫看