en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李文生(1973—),男(汉),教授,博士;研究方向:高温防护涂层,耐磨蚀涂层;E-mail:liws@lut.edu.cn

中图分类号:TG174.442

文献标识码:A

文章编号:1007-9289(2020)01-0091-10

DOI:10.11933/j.issn.1007-9289.20190619001

参考文献 1
李民,程玉贤.航空发动机用高温防护涂层研究进展 [J].中国表面工程,2012,25(1):16-21.LI M,CHENG Y X.Progress in research on high tempera-ture protective coatings for aero – engines[J].China Sur-face Engineering,2012,25(1):16-21(in Chinese).
参考文献 2
曹学强.热障涂层新材料和新结构[M].北京:科学出版社,2016:22-42.CAO X Q.New materials and new structures for thermal bar-rier coatings[M].Beijing:Science Press,2016:22-42(in Chinese).
参考文献 3
LEVI C G.Emerging materials and processes for thermal bar-rier systems[J].Current Opinion in Solid State & Materials Science,2004,8(1):77-91.
参考文献 4
郭洪波,宫声凯,徐惠彬.新型高温/超高温热障涂层及制备技术研究进展 [J].航空学报,2014,35(10):2722-2732.GUO H B,GONG S K,XU H B.Research progress of new high/ultra-high temper thermal barrier coatings and process-ing technologies[J].Acta Aeronautica et Astronautica Sini-ca,2014,35(10):2722-2732(in Chinese).
参考文献 5
YANG D,GAO Y,LIU H,et al.Thermal shock resistance of bimodal structured thermal barrier coatings by atmospheric plasma spraying using nanostructured partially stabilized zirco-nia[J].Surface & Coatings Technology,2017,315:9-16.
参考文献 6
MERCER C,FAULHABER S,EVANS A G,et al.A de-lamination mechanism for thermal barrier coatings subject to calcium – magnesium-alumino-silicate(CMAS)infiltration [J].Acta Materialia,2005,53(4):1029-1039.
参考文献 7
CLARKE D R,OECHSNER M,PADTURE N P.Thermal-barrier coatings for more efficient gas-turbine engines [J].MRS Bulletin,2012,37(10):891-898.
参考文献 8
WANG Y X,ZHOU C G.Microstructure and thermal proper-ties of nanostructured gadolinia doped yttria-stabilized zirconia thermal barrier coatings produced by air plasma spraying[J].Ceramics International,2016,42(11):13047-13052.
参考文献 9
STEPHAN K,YANG J,LEVI C G,et al.Thermomechani-cal interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits [J].Journal of the A-merican Ceramic Society,2006,89(10):3167-3175.
参考文献 10
NARAPARAJU R,MECHNICH P,SCHULZ U,et al.The accelerating effect of CaSO4 within CMAS(CaO-MgO-Al2O3-SiO2)and its effect on the infiltration behavior in EB-PVD 7YSZ[J].Journal of the American Ceramic Society,2016,99(4):1398-1403.
参考文献 11
PUJOL G,ANSART F,BONINO J P,et al.Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications[J].Surface & Coatings Technology,2013,237(25):71-78.
参考文献 12
DAROLIA R.Thermal barrier coatings technology:critical re-view,progress update,remaining challenges and prospects[J].International Materials Reviews,2013,58(6):315-348.
参考文献 13
LARS S,RAVISANKAR N,HECKERT M,et al.Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime:Effect of TBC microstructure and the CMAS chemis-try[J].Journal of the European Ceramic Society,2018,38(15):5101-5112.
参考文献 14
XIAO S,LUO L,CHEN W F,et al.Pore filling behavior of YSZ under CMAS attack:implications for designing corro-sion-resistant thermal barrier coatings[J].Journal of the A-merican Ceramic Society,2018,101(12):5756-5770.
参考文献 15
LIU T,YAO S W,WANG L S,et al.Plasma-sprayed ther-mal barrier coatings with enhanced splat bonding for CMAS and corrosion protection[J].Journal of Thermal Spray Tech-nology,2016,25(1-2):213-221.
参考文献 16
NARAPARAJU R,PUBBYSETTY R P,MECHNICH P,et al.EB-PVD alumina(Al2O3)as a top coat on 7YSZ TBCs against CMAS/VA infiltration:Deposition and reaction mechanisms[J].Journal of the European Ceramic Society,2018,38(9):3333-3346.
参考文献 17
SUN S Y,XUE Z L,HE W T,et al.Corrosion resistant plasma sprayed(Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate [J].Ceramics International,2019,45:8138-8144.
参考文献 18
KRAMER S,YANG J,LEVI C G.Infiltration Inhibiting re-action of gadolinium zirconate thermal barrier coatings with CMAS melts[J].Journal of the American Ceramic Society,2008,91(2):576-583.
参考文献 19
VASSEN R,CAO X,TIETZ F,et al.Zirconates as new ma-terials for thermal barrier coatings[J].Journal of the Ameri-can Ceramic Society,2004,83(8):2023-2028.
参考文献 20
JING W,GUN H B,GAO Y Z,et al.Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.
参考文献 21
WELLMAN R,WHITMAN G,NICHOLLS J R.CMAS cor-rosion of EB-PVD TBCs:Identifying the minimum level to initiate damage[J].International Journal of Refractory Met-als & Hard Materials,2010,28(1):124-132.
参考文献 22
LI L,HITCHMAN N,KNAPP J.Formation of solid splats during thermal spray deposition [J].Journal of Thermal Spray Technology,2009,18(2):148-180.
参考文献 23
GAO L H,GUO H B,GONG S K,et al.Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium – magne-sium – alumina – silicate penetration [J].Journal of the European Ceramic Society,2014,34(10):2553-2561.
参考文献 24
SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO – MgO – Al2O3 – SiO2)and volcanic ash deposits[J].Sur-face & Coatings Technology,2013,235:165-173.
参考文献 25
RAMACHANDRAN C S,BALASUBRAMANIAN V,ANAN-THAPADMANABHAN P V.Thermal cycling behaviour of plasma sprayed lanthanum zirconate based coatings under concurrent infiltration by a molten glass concoction[J].Ce-ramics International,2013,39(2):1413-1431.
参考文献 26
PENG H,WANG L,GUO L,et al.Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J].Pro-gress in Natural Science-Materials International,2012,22(5):461-467.
参考文献 27
LI L,HITCHMAN N,KNAPP J.Failure of thermal barrier coatings subjected to CMAS attack [J].Journal of Thermal Spray Technology,2010,19(1-2):148-155.
参考文献 28
徐春辉.锆酸镧基热障涂层的制备及性能研究[D].武汉:中国地质大学,2018.XU C H.Preparation and properties of lanthanum zirconate series thermal barrier coatings[D].Wuhan:Journal of China University of Geosciences,2018(in Chinese).
参考文献 29
亢永霞,白宇,刘琨,等.热障涂层的CMAS腐蚀失效及对策研究[J].稀有金属材料与工程,2017(1):286-292.KANG Y X,BAI Y,LIU K,et al.Corrosion failure mecha-nism of thermal barrier coatings after infiltration of cmas de-posits and countermeasure study [J].Rare Metal Materials And Engineering,2017(1):286-292(in Chinese).
参考文献 30
苗文辉,王璐,郭洪波,等.CMAS 环境下电子束物理气相沉积热障涂层的热循环行为及失效机制[J].复合材料学报,2012(5):76-82.MIAO W H,WANG L,GUO H B,et al.Thermal cycling behavior and associated failure mechanism of EB-PVD ther-mal barrier coatings with CMAS deposits[J].Acta Materiae Compositae Sinica,2012(5):76-82(in Chinese).
参考文献 31
SHINOZAKI M,CLYNE T W.The effect of vermiculite on the degradation and spallation of plasma sprayed thermal bar-rier coatings [J].Surface & Coatings Technology,2013,216:172-177.
目录contents

    摘要

    为探究 La2Zr2O7(LZO)涂层服役于 CMAS 环境中其微观结构、力学性能的变化及封阻渗透的原因,采用大气等离子制备了以 Al 2O3 为基体的 LZO/ 8YSZ 双陶瓷热障涂层( TBCs) ,并辅以 8YSZ 单陶瓷 TBCs 作对比。 利用 XRD、SEM 和 EDS 研究了 8YSZ 和 LZO/ 8YSZ 单双陶瓷 TBCs 的相结构和微观组织;利用维式硬度计和 Image Pro plus 软件研究了腐蚀后的涂层硬度及渗透深度。 结果表明:1250 ℃ CMAS 腐蚀 12 h 后,LZO/ 8YSZ 双陶瓷 TBCs 中 LZO 反应厚度约为 57 μm;反应层物相以球状 ZrO2 和棒状 Ca2La8( SiO4 ) 6O2 为主,并伴有少量 CaAl 2 Si 2O8 和 MgAl 2O4 。 而 8YSZ 单陶瓷 TBCs 腐蚀深度约为 300 μm( 整个 8YSZ 层厚) ,截面变为以球状 m-ZrO2 为主的疏松结构。 腐蚀后 8YSZ、LZO 反应层硬度均有所增加,但提高的面内刚度未引发反应/ 未反应层间开裂。 LZO 陶瓷层作为双陶瓷 TBCs 牺牲防护层,依靠 La 同 CMAS 反应生成致密磷灰石(Ca2La8( SiO4 ) 6O2 )的封阻作用,有效减少 CMAS 渗入,抑制了内部 8YSZ 的不稳定性。

    Abstract

    In order to investigate the microstructure, mechanical properties and the case of stopping penetration, the 8YSZ and LZO/ 8YSZ thermal barrier coatings (TBCs) basing on Al 2O3 were prepared by air plasma spraying. The phase structure and microstructure of 8YSZ and LZO/ 8YSZ TBCs were studied by XRD, SEM and EDS. The coating hardness and penetration depth after corrosion were analyzed by the Vickers hardness test and Image Pro plus software. The results showed the corrded thickness of LZO/ 8YSZ TBCs in LZO layer was about 57 μm after 12 h. The phases of the reaction layer have mainly spherical ZrO2 and rod-like Ca2La8(SiO4 )6O2 , accompaning by a small amount of CaAl 2 Si 2O8 and MgAl 2O4 . The 8YSZ single ceramic TBCs was a corrosion depth of about 300 μm (whole 8YSZ coating), while its cross section has becomed a loose structure mainly composing of spherical m-ZrO2 . The hardnesses of the 8YSZ and LZO reaction layers have increased after corrosion, but it did not cause cracking at the corrosion interface. The stability of the internal 8YSZ was protected by the reaction of La with CMAS to form dense apatite (Ca2La8(SiO4 )6O2 ) which effectively blocked the infiltration of CMAS.

  • 0 引言

  • 热障涂层(Thermal barrier coatings,TBCs)由高温合金基体、粘结层(Bond-Coat,BC)、陶瓷隔热涂层( Top-Coat,TC) 构成[1-5]。 氧化钇部分稳定氧化锆( YSZ) 具有较低的热导率( 0.69~2.4 W/(m·K)(1273 K)),高的强度和断裂韧性(1.3~3.2 MPa·m1/2)[6],是广泛使用的热障涂层隔热陶瓷材料。 但随着发动机进气温度的增加(>1200℃),YSZ涂层相变、烧结[7-8],及熔融微粒(包括灰尘、沙粒或火山灰等,主要成分为钙镁铝硅酸盐,CaO-MgO-SiO2-Al2O3,简称CMAS,其中火山灰、 沙粒熔点分别为> 1150℃,1230℃[9-10 ]) 粘附降解[11-12 ] 等问题,加剧了以YSZ为顶隔热陶瓷层的TBCs的失效。 研究表明,这种高温熔融CMAS腐蚀YSZ体系造成的降解,主要是CMAS引发YSZ体系中稳定剂氧化钇(Y2O3)扩散,进而导致氧化锆( ZrO2) 发生四方(t)—单斜(m)相变。 一方面单斜转变导致体积膨胀增加涂层的应力引起涂层开裂分层;另一方面,渗透和固化的CMAS增加涂层(主要指EBPVD制备的)杨氏模量,降低涂层应变耐受性也导致涂层的提前失效[13]。 因此研究增强TBCs抗CMAS的新技术和新材料极为关键。

  • Xiao等[14]通过制备不同尺寸球形孔的YSZ球团来研究其同CMAS的反应行为,发现孔径大小对CMAS填充渗透有一定的影响,并指出可以通过调整TBCs中微观结构(增大孔隙孔径和增加扁平粒子之间的粘合比[15]) 来抵抗CMAS攻击。 但是TBCs涂层结构中实际孔隙填充行为的研究尚未实现,且引入大孔隙结构将不利于涂层的结构强度和隔热性。 因此更多研究专注于TBCs表面抗CMAS材料,特别是能附和于YSZ隔热层上的TBCs抗CMAS保护材料,以实现抗CMAS的同时又能保证TBCs结构稳定(即双陶瓷结构)。 Naraparaju等[16] 采用电子束物理气相沉积(Electron beam-physical vapor deposition,EBPVD)在7YSZ-TBCs上制备了100~120 μm的柱状晶Al2O3 保护层, 与CMAS( 24.7CaO-12.4MgO-11.1Al2O3-41.7SiO2-8.7FeO) 1250℃反应不同时间后,于CMAS/Al2O3 界面处形成了不断生长的尖晶石(MgAl2-xFexO4) 密封相,但由于柱状无定型Al2O3 涂层收缩产生裂缝,这种密封相仅在无裂缝位置有效起到了保护渗透作用。Sun等[17] 采用等离子喷涂(Plasma spraying,PS)在YSZ为隔热层的TBCs上制备了50 μm的(Y0.8Gd0.2)3Al5O12(GYAG),经1250℃ 的CMAS(22CaO-19MgO-14AlO1.5-45SiO2)反应24 h后,GYAG中(Y,Gd)AlO3 相与CMAS(主要反应相CaO和SiO2)生成存在于CMAS中的Ca4Y6(SiO4)6O和CaAl2 Si2O8 起到封阻作用。 另外,烧绿石结构的稀土(RE La,Nd,Sm,Gd)锆酸盐也具有优异的抗CMAS腐蚀性能,其中Gd2Zr2O7 和La2Zr2O7研究较多。 Krämer等[18] 首先报道了锆酸钆(Gd2Zr2O7)作为TBCs陶瓷材料其高的Gd含量对CMAS渗透具有高抗性,并指出稀土元素Gd形成的磷灰石相和其他具有高熔点的结晶产物是封阻渗透的关键。

  • 相比锆酸钆(Gd2Zr2O7),锆酸镧(La2Zr2O7,LZO)同样具有低的热导率、高温相稳定性、低氧透过性和抗CMAS性[19],但就其抗CMAS腐蚀性多集中在两种粉末(LZO与CMAS)间的反应研究,而LZO/YSZ制成的双陶瓷结构同CMAS反应情况少有报道。 文中基于此,采用大气等离子喷涂(Airplasma spraying, APS) 制备LZO/8YSZ双陶瓷TBCs,与8YSZ单陶瓷TBCs进行对比试验,通过表征两种结构TBCs表、截面腐蚀物相及形貌、腐蚀深度及硬度变化,阐明LZO涂层封阻保护的机理,为双陶瓷TBCs抗腐蚀应用提供数据参考。

  • 1 试验

  • 1.1 喷涂材料与涂层制备

  • 陶瓷层粉末采用Oerlikon Metco生产的METCO 204B-NS 8YSZ(粒径为-75~45 μm)和湖南兆益热喷涂材料有限公司生产的LZO(粒径为-85~13 μm。 考虑到TBCs结构及基体材料的耐受性,喷涂基材选用浙江新亚纺织瓷件厂生产的Al2O3 圆片,尺寸 Φ20 mm × 5 mm。 8YSZ、LZO/8YSZ单、双陶瓷层均采用九江生产的GP-80 型APS设备制备。 涂层沉积前按照GB11373-89《热喷涂金属件表面预处理通则》对基材进行表面处理及活化,并用喷枪预热,接触式热电偶测试,以确保喷涂基体达到200℃左右的喷涂温度,具体喷涂参数见表1。 其中8YSZ单陶瓷TBCs中YSZ厚约(300±20) μm、LZO/8YSZ双陶瓷TBCs中LZO厚约(100±20) μm,YSZ厚约(200±20) μm。

  • 表1 大气等离子喷涂参数

  • Table1 Parameters of air plasma spraying

  • 1.2 CMAS腐蚀盐及腐蚀样品制备

  • 试验采用固相反应法配制摩尔比[20-21] 为35CaO-10MgO-7Al2O3-48SiO2 的CMAS腐蚀盐。具体试验过程如下:按照摩尔比称量CaO、MgO、Al2O3、SiO2 这4 种分析纯粉末,放入混粉机机械混合4 h;将混合好的粉末置于行星式球磨机,并加去离子水,以ZrO2 为磨球,球料体积比10 ∶1,转速450 r/min,球磨6 h;将球磨好的粉末在干燥箱中干燥10 h;之后倒入刚玉坩埚1300℃热处理4 h,切取凝固后CMAS研磨过300 筛,得到粒径范围在0.417~52.481 μm间的备用CMAS粉。 对备用CMAS粉末进行物相测试,以保证达到腐蚀试验的要求。 X射线衍射(XRD)结果如图1,发现20°~40° 间出现较宽漫散射峰,且无特征峰。 CMAS的熔化温度参考Wellman等[21] 中同配比(35CaO-10MgO-7Al2O3-48SiO2 的CMAS) 下实验结果,即CMAS熔化范围约为1235~1240℃。 而腐蚀试验条件为1250℃,符合熔盐完全熔融的试验标准及热障涂层实际服役环境中表面陶瓷层的温度。 试样表面以(12±2) mg/cm2 涂覆CMAS,同时为防止

  • 图1 CMAS(Ca35Mg10Al7 Si48)粉末的XRD图谱

  • Fig.1 XRD patterns of CMAS(Ca35Mg10Al7 Si48) powder

  • 边缘效应,距边缘1 mm处不涂覆,涂覆时将CMAS粉末与无水乙醇配制成悬浮液,用细毛刷蘸取涂覆,待酒精干燥后小心转移至箱式电阻炉。

  • 1.3 涂层性能测试及表征

  • 采用箱式电阻炉对喷涂态8YSZ、LZO/8YSZ单、双陶瓷涂层试样进行1250℃ CMAS腐蚀试验。 腐蚀时间分别为1、4 和12 h,每个时间设置5 个平行试样,保温结束后随炉冷却至室温为测试和表征待用。 采用维氏硬度仪HV-1000 测量涂层截面硬度,加载力为5 N,加载时间10 s,每个样测试8 组取平均值;采用D/MAX2500PC型X射线衍射仪(XRD)对涂层表面进行相结构分析,扫描速度为5 °/min,扫描范围20°~80°,加速电压为40 kV,电流30 mA;采用Quanta FEG 450场发射扫描电镜(SEM-EDS)对经环氧树脂镶嵌、打磨、抛光、喷金后的腐蚀试样进行微观组织及元素分析;采用Image Pro plus软件进行腐蚀层厚度测量。

  • 2 结果与讨论

  • 2.1 腐蚀表面物相及形貌

  • 图2 为8YSZ、LZO/8YSZ单、双陶瓷TBCs腐蚀不同时间宏观形貌。 图2 中0 h为喷涂态的8YSZ、LZO/8YSZ单、双陶瓷TBCs表面;图2 中腐蚀1 h后试样表面为光滑的镜面形貌;腐蚀4 h后试样表面局部出现“起泡”现象。 因为随腐蚀时间增加,沉积在涂层表面的CMAS溶解凝固又不断反应渗入涂层内部时,涂层孔隙中的气体不断向外扩散被熔融的CMAS封闭[21-22]。 待12 h CMAS基本反应完全渗透后,试样表面起泡现象消失。

  • 图3 为8YSZ、LZO/8YSZ单、双陶瓷TBCs喷涂态、腐蚀1、4 和12 h后表面XRD。 图3( a)中喷涂态8YSZ以t-ZrO2 为主;腐蚀1 h后特征峰处t-ZrO2 强度明显降低(图中虚线椭圆),且出现了较强新物相CaAl2 Si2O8 特征峰(图中虚线圆圈),表明8YSZ腐蚀1 h后表面相组成发生转变;腐蚀4 h后,表面物相中CaAl2 Si2O8 的峰个数增多,即含量增加;腐蚀12 h后,表面以m-ZrO2为主,并伴有少量CaAl2 Si2O8。 这是由于8YSZ(主要为富Y的t-ZrO2) 同熔融CMAS接触后,YSZ中(8%Y2O3-ZrO2) Y离子受到CMAS腐蚀优先析出,缺少Y离子的YSZ失去稳定剂,将在

  • 图2 单、双陶瓷TBCs腐蚀不同时间的宏观形貌

  • Fig.2 Macro-graphs of single and double ceramic TBCs after different corrosion time

  • 图3 单、双陶瓷TBCs喷涂态、腐蚀1 h、4 h、12 h后的表面XRD图谱

  • Fig.3 XRD patterns of the single and double ceramic TBCs for as-sprayed, corroded 1 h, 4 h and 12 h

  • 冷却过程中发生四方向单斜的转变,即变为m-ZrO2,由于过程非常迅速且非扩散控制故又称为马氏体相变[23-24]。

  • 图3(b) 中喷涂态的LZO以烧绿石结构( P型)为主;腐蚀1 h后表面LZO被富含La、Ca的磷灰石相Ca2La8(SiO4)6O2 替代;腐蚀4 h后,磷灰石相Ca2La8(SiO4)6O2 峰个数增多,并伴有少量钙长石CaAl2 Si2O8 出现; 腐蚀12 h后, 钙长石CaAl2 Si2O8 和m-ZrO2 均有所增加。 结合Krämer等[18]研究结果及以上现象,可得到反应方程式(1),即腐蚀产物为磷灰石相(Ca2La8(SiO4)6O2)和萤石相(ZrO2),并伴有较少尖晶石(MgAl2O4)、钙长石( CaAl2 Si2O8) 相。 由于反应产物中CaAl2 Si2O8、MgAl2O4 较少,故图3(b)中仅出现少量CaAl2 Si2O8 峰,而未出现MgAl2O4 峰。

  • C0.35M0.1A0.07 S0.48+ L0.5Z0.5 → C0.125L0.5 S0.375(磷灰石) +0.5Z(萤石) + 0.0418M0.33A0.67(尖晶石) +0.105C0.2A0.2 S0.4(钙长石) +C0.204M0.0862(残余CMAS)(1)

  • 图4、5 分别为8YSZ、LZO/8YSZ单、双陶瓷TBCs喷涂态、腐蚀1、4 和12 h表面形貌。 图4(a)、图5(a)为喷涂态8YSZ、LZO/8YSZ单、双陶瓷层TBCs表面,可看到熔化、半熔化颗粒沉积而成的花菜状结构。 图4( b)、图5( b) 为腐蚀1 h后单、双陶瓷层TBCs表面,花菜结构变为平整结构。 这是因为1 h CMAS未反应充分,冷却过程中在涂层表面发生凝固。 图4(c)为腐蚀4 h后8YSZ单陶瓷TBCs表面,可看到已反应完并逐渐暴露的凸起腐蚀层。 图5( c) LZO/8YSZ双陶瓷TBCs表面为同熔盐相混合的点、棒状区。 图4(d)中腐蚀12 h后8YSZ表面与喷涂态形貌相似,且花菜结构中密排有细小点状物质,EDS分析见图6( a)中A点,这种镶嵌在灰色CMAS物质(B点)中,呈圆球、半圆球的物质主要由Zr、O和少量Si、Ca元素组成,结合图3(a) XRD分析为m-ZrO2。 而图5(d)中LZO表面呈细小针状结构,EDS分析见图6( b),细小针状表面实为棒、球状混合区。 综合表2 中C(其中Ca、La、Si原子比近似1 ∶4 ∶3)、D及图3(b)XRD结果判定棒、球状物质为Ca2La8(SiO4)6O2[25]和t-ZrO2

  • 图4 8YSZ TBCs喷涂态、腐蚀1 h、4 h、12 h后表面形貌

  • Fig.4 Surface morphologies of 8YSZ TBCs for as-sprayed, corroded 1 h, 4 h and 12 h

  • 图5 LZO/8YSZ TBCs喷涂态、腐蚀1 h、4 h、12 h后表面形貌

  • Fig.5 Surface morphologies of LZO/8YSZ TBCs for as-sprayed, corroded 1 h, 4 h and 12 h

  • 图6 单、双陶瓷TBCs腐蚀12 h后表面形貌及局部成分

  • Fig.6 Surface morphologies and local ingredients of single and double ceramic TBCs after corrosion for 12 h

  • 2.2 腐蚀截面形貌及物相

  • 图7 为8YSZ单陶瓷TBCs喷涂态、腐蚀1、4和12 h后不同区域截面形貌。 图7(a1)~(a3)为喷涂态,图7( a1) 中存在APS制备的孔隙、裂纹及典型层状组织(图7( a2)),图7( a3)中8YSZ/Al2O3 界面结合良好。 图7(b1)~(b3)为腐蚀1 h后,可看到陶瓷顶层残留一定厚度的灰色CMAS,图7(b2)近表面圆球颗粒代替喷涂态层状结构;图7(b3)中8YSZ/Al2O3 界面无变化。 图7( c1)(c3)为腐蚀4 h后,图7( c1) 中灰色残余CMAS沉积较1 h减少;图7( c2)近表面圆球颗粒形成的疏松结构沿厚度方向变厚,表明腐蚀不断深入;图7(c3)界面结合处仍保持良好,无裂纹孔洞等明显缺陷。 图7(d1)~(d3)为腐蚀12 h后,图7(d1)8YSZ表面CMAS沉积消失,整个8YSZ层结构疏松;图7( d2)、( d3) 均呈现完全被腐蚀的疏松结构。 随腐蚀时间延长,CMAS通过涂层内部连通孔隙及裂纹渗入YSZ晶界,造成Y离子溶解,减少的Y引起喷涂态( t相) YSZ的不稳定[23-24],重新凝固形成了具有不同微观结构和以m-ZrO2 为主的球状YSZ颗粒,即发生t→m的相转变[23, 26]。

  • 图7 8YSZ TBCs喷涂态、腐蚀1 h、4 h、12 h后不同区域截面形貌

  • Fig.7 Cross-sectional morphologies of different zone in 8YSZ TBCs for as-sprayed, corroded 1, 4 and 12 h

  • 图8 为LZO/8YSZ双陶瓷TBCs喷涂态、腐蚀1、4 和12 h后不同区域截面形貌。 图8(a1)为层状结构(图8(a2))组成的喷涂态截面;图8(b1)为腐蚀1 h后,可看到明显腐蚀层,即球、棒状物质并相间CMAS的混合区,腐蚀层整体表现为上部疏松下部密实(放大见图8(b2)),总厚约14 μm。 图8(c1)为腐蚀4 h后,LZO表面CMAS沉积量减少(放大见图8(c2)),腐蚀层厚度增加至23 μm。 图8(d1)为腐蚀12 h后,仍剩余CMAS沉积(但12 h后8YSZ表面已完全消失,见图7(d1)),腐蚀层厚度增加至57 μm(放大见图7(d2))。 双陶瓷腐蚀现象表明:相同腐蚀条件下,CMAS渗透深度小于8YSZ单陶瓷(12 h渗透整个300 μm厚的8YSZ)。而存在于反应层中的疏松-致密结构,与CMAS沉积于表面产生的力作用和腐蚀反应有关。 一方面熔融CMAS直接接触表层LZO发生反应,另一方面通过涂层的裂纹孔隙等缺陷渗透侵入涂层内部反应。 随反应进行,堆积于涂层表面的CMAS力作用逐渐减少,反应涂层中孔隙内气体向外扩散[27],加之反应的进行程度包括反应物、生成物量,温度[24, 28]等综合因素使得LZO反应层出现疏松-致密结构。

  • 图8 LZO/8YSZ TBCs喷涂态、腐蚀1 h、4 h、12 h后不同区域截面形貌

  • Fig.8 Cross-sectional morphologies of different zone in LZO/8YSZ TBCs for as-sprayed, corroded 1, 4 and 12 h

  • 图9 为LZO腐蚀密实层表面XRD,通过将LZO腐蚀层磨抛至密实处得到。 结果表明密实层主要物相为Ca2La8( SiO4)6O2 和ZrO2,而结晶玻璃相磷灰石(Ca2La8(SiO4)6O2)[29]是封阻渗透的关键。

  • 图9 LZO腐蚀密实层表面XRD

  • Fig.9 XRD patterns of the dense interaction layer of LZO

  • 2.3 腐蚀前后涂层硬度

  • 图10 为8YSZ、LZO/8YSZ单、双陶瓷TBCs腐蚀前后沿深度方向维式硬度分布(选取喷涂态和腐蚀12 h后的样品抛光截面,距离涂层表面每隔25 μm打点取值。 以测试残余CMAS维式硬

  • 图10 单、双陶瓷TBCs腐蚀前后沿深度方向维式硬度分布

  • Fig.10 Micro-hardness distribution along the depth direction before and after corrosion of single and double ceramic TBCs

  • 度值8.59 GPa为参考,见图中水平线)。 图10(a) 8YSZ单陶瓷TBCs中喷涂态8YSZ层维式硬度为6.50~7.50 GPa,腐蚀12 h后增大为7.00~8.50 GPa。 图10( b) LZO/8YSZ双陶瓷TBCs中喷涂态LZO隔热层维式硬度为7.35~7.98 GPa,8YSZ层为6.50~7.50 GPa。 腐蚀12 h后,LZO反应层硬度值增大为7.71~8.44 GPa,未反应区硬度值与喷涂态相似( 7.35~7.98 GPa),8YSZ硬度值增大为6.53~7.59 GPa。 由于玻璃相CMAS本身具有较高硬度,其反应渗透进入涂层结构将增大反应层硬度值,但腐蚀后反应/未反应层处未见开裂现象。

  • 2.4 腐蚀渗透深度

  • 图11 为8YSZ单陶瓷TBCs不同腐蚀时间后线扫描结果。 图11( a)中Ca、Mg、Al、Si元素逐渐下降,Y元素略有上升。 表明1 h腐蚀后,8YSZ同CMAS发生反应,表现为Y元素扩散进入CMAS区域,导致8YSZ层中Y含量减少。 图11( b)中还发现8YSZ/Al2O3 界面处明显升高的Si含量,表明4 h腐蚀后,CMAS中Si元素率先渗透8YSZ层到达Al2O3 基体表面。 图11( c)中8YSZ/Al2O3 界面处除Si升高外,Ca也出现了明显增加。 表明12 h腐蚀后, Ca也渗透8YSZ层并堆积在Al2O3 表面。 研究表明[30-31],Si、Ca离子主要通过晶界扩散进入涂层,引发YSZ结构变化进而失效,所以随腐蚀时间延长涂层中Si、 Ca离子含量增多, 表明腐蚀不断深入。

  • 图11 8YSZ TBCs不同腐蚀时间后线扫描

  • Fig.11 EDS line scan of 8YSZ TBCs after different corrosion time

  • 图12 为LZO/8YSZ双陶瓷TBCs腐蚀不同时间后疏松与致密结构深度变化。 由图知随腐蚀时间的增加,疏松、致密反应层均不断增厚,且疏松反应层增加更快。 受CMAS沉积力和反应中不断向外扩散的孔隙气体的共同作用,使得表面以氧化锆为主的疏松层增厚较快,而镧基磷灰石(Ca2La8(SiO4)6O2)不断渗入裂缝并结晶的致密层,受到反应量及结晶位置的影响而增加较慢。 所以LZO作为牺牲防护层依靠反应生成致密磷灰石(Ca2La8( SiO4)6O2) 的封阻作用,有效地减少了CMAS渗入,抑制了内部8YSZ的不稳定性。

  • 图13 为8YSZ、LZO/8YSZ单、双陶瓷TBCs渗透深度随反应时间变化图。 对于8YSZ单陶瓷

  • 图12 LZO/8YSZ双陶瓷TBCs腐蚀不同时间后疏松与致密结构深度变化

  • Fig.12 Depth changes of loose and dense structure in LZO/8YSZ TBCs after different corrosion time

  • 图13 单、双陶瓷TBCs渗透深度随反应时间变化

  • Fig.13 CMAS penetration depths of single and double ceramic TBCs after different corrosion time

  • TBCs,CMAS腐蚀12 h后渗透深度约为300 μm,即整个8YSZ层完全反应。 而LZO/8YSZ双陶瓷TBCs, 腐蚀1 h后( 图8( b2)), 腐蚀层厚约14 μm;腐蚀4 h后( 图8( c2)), 厚度增加至23 μm;腐蚀12 h后(图8( d2)),达到57 μm。故对于发生相变及结构变化的8YSZ单陶瓷TBCs,LZO/8YSZ双陶瓷TBCs在CMAS条件下稳定性更好。

  • 3 结论

  • (1) 8YSZ、LZO/8YSZ单、双陶瓷TBCs 1250℃CMAS腐蚀1 h后表面为光滑的镜面形貌,4 h后表面局部出现“起泡”现象。 因为沉积于涂层表面的CMAS溶解凝固又不断反应渗入涂层内部时,引发涂层中孔隙、气体不断向外扩散又被熔融CMAS封闭。 12 h后CMAS基本反应完全渗透,表面起泡现象消失。

  • (2)1250℃ CMAS腐蚀12 h,LZO/8YSZ双陶瓷TBCs表面花菜状变为混合球、棒状,其成分以ZrO2 和磷灰石Ca2La8(SiO4)6O2 为主,并伴有少量钙长石CaAl2 Si2O8 和尖晶石MgAl2O4; 而8YSZ单陶瓷TBCs表面由花菜状变为以球状mZrO2 为主的疏松状,即发生t→m的相变。

  • (3)经CMAS腐蚀渗透8YSZ、LZO层均出现硬度增大现象。 LZO/8YSZ双陶瓷TBCs中,喷涂态LZO硬度为7.35~7.98 GPa,腐蚀12 h后LZO反应层硬度增大为7.71~8.44 GPa。 8YSZ单陶瓷TBCs中,喷涂态8YSZ硬度为6.50~7.50 GPa,腐蚀12 h后硬度增大为7.00~8.50 GPa。 因为脆性玻璃相CMAS自身具有较大硬度,其反应渗入使得涂层具有高的面内刚度,但增加的面内刚度尚未引发反应/未反应层间开裂失效。

  • (4)1250℃ CMAS腐蚀12 h,LZO/8YSZ双陶瓷TBCs中LZO反应厚度约为57 μm;而8YSZ单陶瓷TBCs中CMAS完全渗透整个8YSZ(约300 μm)。 因为LZO作为牺牲防护层依靠La同CMAS反应生成致密磷灰石(Ca2La8( SiO4)6O2)的封阻作用,有效减少了CMAS渗入,抑制了内部8YSZ的不稳定性。

  • 参考文献

    • [1] 李民,程玉贤.航空发动机用高温防护涂层研究进展 [J].中国表面工程,2012,25(1):16-21.LI M,CHENG Y X.Progress in research on high tempera-ture protective coatings for aero – engines[J].China Sur-face Engineering,2012,25(1):16-21(in Chinese).

    • [2] 曹学强.热障涂层新材料和新结构[M].北京:科学出版社,2016:22-42.CAO X Q.New materials and new structures for thermal bar-rier coatings[M].Beijing:Science Press,2016:22-42(in Chinese).

    • [3] LEVI C G.Emerging materials and processes for thermal bar-rier systems[J].Current Opinion in Solid State & Materials Science,2004,8(1):77-91.

    • [4] 郭洪波,宫声凯,徐惠彬.新型高温/超高温热障涂层及制备技术研究进展 [J].航空学报,2014,35(10):2722-2732.GUO H B,GONG S K,XU H B.Research progress of new high/ultra-high temper thermal barrier coatings and process-ing technologies[J].Acta Aeronautica et Astronautica Sini-ca,2014,35(10):2722-2732(in Chinese).

    • [5] YANG D,GAO Y,LIU H,et al.Thermal shock resistance of bimodal structured thermal barrier coatings by atmospheric plasma spraying using nanostructured partially stabilized zirco-nia[J].Surface & Coatings Technology,2017,315:9-16.

    • [6] MERCER C,FAULHABER S,EVANS A G,et al.A de-lamination mechanism for thermal barrier coatings subject to calcium – magnesium-alumino-silicate(CMAS)infiltration [J].Acta Materialia,2005,53(4):1029-1039.

    • [7] CLARKE D R,OECHSNER M,PADTURE N P.Thermal-barrier coatings for more efficient gas-turbine engines [J].MRS Bulletin,2012,37(10):891-898.

    • [8] WANG Y X,ZHOU C G.Microstructure and thermal proper-ties of nanostructured gadolinia doped yttria-stabilized zirconia thermal barrier coatings produced by air plasma spraying[J].Ceramics International,2016,42(11):13047-13052.

    • [9] STEPHAN K,YANG J,LEVI C G,et al.Thermomechani-cal interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits [J].Journal of the A-merican Ceramic Society,2006,89(10):3167-3175.

    • [10] NARAPARAJU R,MECHNICH P,SCHULZ U,et al.The accelerating effect of CaSO4 within CMAS(CaO-MgO-Al2O3-SiO2)and its effect on the infiltration behavior in EB-PVD 7YSZ[J].Journal of the American Ceramic Society,2016,99(4):1398-1403.

    • [11] PUJOL G,ANSART F,BONINO J P,et al.Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications[J].Surface & Coatings Technology,2013,237(25):71-78.

    • [12] DAROLIA R.Thermal barrier coatings technology:critical re-view,progress update,remaining challenges and prospects[J].International Materials Reviews,2013,58(6):315-348.

    • [13] LARS S,RAVISANKAR N,HECKERT M,et al.Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime:Effect of TBC microstructure and the CMAS chemis-try[J].Journal of the European Ceramic Society,2018,38(15):5101-5112.

    • [14] XIAO S,LUO L,CHEN W F,et al.Pore filling behavior of YSZ under CMAS attack:implications for designing corro-sion-resistant thermal barrier coatings[J].Journal of the A-merican Ceramic Society,2018,101(12):5756-5770.

    • [15] LIU T,YAO S W,WANG L S,et al.Plasma-sprayed ther-mal barrier coatings with enhanced splat bonding for CMAS and corrosion protection[J].Journal of Thermal Spray Tech-nology,2016,25(1-2):213-221.

    • [16] NARAPARAJU R,PUBBYSETTY R P,MECHNICH P,et al.EB-PVD alumina(Al2O3)as a top coat on 7YSZ TBCs against CMAS/VA infiltration:Deposition and reaction mechanisms[J].Journal of the European Ceramic Society,2018,38(9):3333-3346.

    • [17] SUN S Y,XUE Z L,HE W T,et al.Corrosion resistant plasma sprayed(Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate [J].Ceramics International,2019,45:8138-8144.

    • [18] KRAMER S,YANG J,LEVI C G.Infiltration Inhibiting re-action of gadolinium zirconate thermal barrier coatings with CMAS melts[J].Journal of the American Ceramic Society,2008,91(2):576-583.

    • [19] VASSEN R,CAO X,TIETZ F,et al.Zirconates as new ma-terials for thermal barrier coatings[J].Journal of the Ameri-can Ceramic Society,2004,83(8):2023-2028.

    • [20] JING W,GUN H B,GAO Y Z,et al.Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.

    • [21] WELLMAN R,WHITMAN G,NICHOLLS J R.CMAS cor-rosion of EB-PVD TBCs:Identifying the minimum level to initiate damage[J].International Journal of Refractory Met-als & Hard Materials,2010,28(1):124-132.

    • [22] LI L,HITCHMAN N,KNAPP J.Formation of solid splats during thermal spray deposition [J].Journal of Thermal Spray Technology,2009,18(2):148-180.

    • [23] GAO L H,GUO H B,GONG S K,et al.Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium – magne-sium – alumina – silicate penetration [J].Journal of the European Ceramic Society,2014,34(10):2553-2561.

    • [24] SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO – MgO – Al2O3 – SiO2)and volcanic ash deposits[J].Sur-face & Coatings Technology,2013,235:165-173.

    • [25] RAMACHANDRAN C S,BALASUBRAMANIAN V,ANAN-THAPADMANABHAN P V.Thermal cycling behaviour of plasma sprayed lanthanum zirconate based coatings under concurrent infiltration by a molten glass concoction[J].Ce-ramics International,2013,39(2):1413-1431.

    • [26] PENG H,WANG L,GUO L,et al.Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J].Pro-gress in Natural Science-Materials International,2012,22(5):461-467.

    • [27] LI L,HITCHMAN N,KNAPP J.Failure of thermal barrier coatings subjected to CMAS attack [J].Journal of Thermal Spray Technology,2010,19(1-2):148-155.

    • [28] 徐春辉.锆酸镧基热障涂层的制备及性能研究[D].武汉:中国地质大学,2018.XU C H.Preparation and properties of lanthanum zirconate series thermal barrier coatings[D].Wuhan:Journal of China University of Geosciences,2018(in Chinese).

    • [29] 亢永霞,白宇,刘琨,等.热障涂层的CMAS腐蚀失效及对策研究[J].稀有金属材料与工程,2017(1):286-292.KANG Y X,BAI Y,LIU K,et al.Corrosion failure mecha-nism of thermal barrier coatings after infiltration of cmas de-posits and countermeasure study [J].Rare Metal Materials And Engineering,2017(1):286-292(in Chinese).

    • [30] 苗文辉,王璐,郭洪波,等.CMAS 环境下电子束物理气相沉积热障涂层的热循环行为及失效机制[J].复合材料学报,2012(5):76-82.MIAO W H,WANG L,GUO H B,et al.Thermal cycling behavior and associated failure mechanism of EB-PVD ther-mal barrier coatings with CMAS deposits[J].Acta Materiae Compositae Sinica,2012(5):76-82(in Chinese).

    • [31] SHINOZAKI M,CLYNE T W.The effect of vermiculite on the degradation and spallation of plasma sprayed thermal bar-rier coatings [J].Surface & Coatings Technology,2013,216:172-177.

  • 参考文献

    • [1] 李民,程玉贤.航空发动机用高温防护涂层研究进展 [J].中国表面工程,2012,25(1):16-21.LI M,CHENG Y X.Progress in research on high tempera-ture protective coatings for aero – engines[J].China Sur-face Engineering,2012,25(1):16-21(in Chinese).

    • [2] 曹学强.热障涂层新材料和新结构[M].北京:科学出版社,2016:22-42.CAO X Q.New materials and new structures for thermal bar-rier coatings[M].Beijing:Science Press,2016:22-42(in Chinese).

    • [3] LEVI C G.Emerging materials and processes for thermal bar-rier systems[J].Current Opinion in Solid State & Materials Science,2004,8(1):77-91.

    • [4] 郭洪波,宫声凯,徐惠彬.新型高温/超高温热障涂层及制备技术研究进展 [J].航空学报,2014,35(10):2722-2732.GUO H B,GONG S K,XU H B.Research progress of new high/ultra-high temper thermal barrier coatings and process-ing technologies[J].Acta Aeronautica et Astronautica Sini-ca,2014,35(10):2722-2732(in Chinese).

    • [5] YANG D,GAO Y,LIU H,et al.Thermal shock resistance of bimodal structured thermal barrier coatings by atmospheric plasma spraying using nanostructured partially stabilized zirco-nia[J].Surface & Coatings Technology,2017,315:9-16.

    • [6] MERCER C,FAULHABER S,EVANS A G,et al.A de-lamination mechanism for thermal barrier coatings subject to calcium – magnesium-alumino-silicate(CMAS)infiltration [J].Acta Materialia,2005,53(4):1029-1039.

    • [7] CLARKE D R,OECHSNER M,PADTURE N P.Thermal-barrier coatings for more efficient gas-turbine engines [J].MRS Bulletin,2012,37(10):891-898.

    • [8] WANG Y X,ZHOU C G.Microstructure and thermal proper-ties of nanostructured gadolinia doped yttria-stabilized zirconia thermal barrier coatings produced by air plasma spraying[J].Ceramics International,2016,42(11):13047-13052.

    • [9] STEPHAN K,YANG J,LEVI C G,et al.Thermomechani-cal interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits [J].Journal of the A-merican Ceramic Society,2006,89(10):3167-3175.

    • [10] NARAPARAJU R,MECHNICH P,SCHULZ U,et al.The accelerating effect of CaSO4 within CMAS(CaO-MgO-Al2O3-SiO2)and its effect on the infiltration behavior in EB-PVD 7YSZ[J].Journal of the American Ceramic Society,2016,99(4):1398-1403.

    • [11] PUJOL G,ANSART F,BONINO J P,et al.Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications[J].Surface & Coatings Technology,2013,237(25):71-78.

    • [12] DAROLIA R.Thermal barrier coatings technology:critical re-view,progress update,remaining challenges and prospects[J].International Materials Reviews,2013,58(6):315-348.

    • [13] LARS S,RAVISANKAR N,HECKERT M,et al.Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime:Effect of TBC microstructure and the CMAS chemis-try[J].Journal of the European Ceramic Society,2018,38(15):5101-5112.

    • [14] XIAO S,LUO L,CHEN W F,et al.Pore filling behavior of YSZ under CMAS attack:implications for designing corro-sion-resistant thermal barrier coatings[J].Journal of the A-merican Ceramic Society,2018,101(12):5756-5770.

    • [15] LIU T,YAO S W,WANG L S,et al.Plasma-sprayed ther-mal barrier coatings with enhanced splat bonding for CMAS and corrosion protection[J].Journal of Thermal Spray Tech-nology,2016,25(1-2):213-221.

    • [16] NARAPARAJU R,PUBBYSETTY R P,MECHNICH P,et al.EB-PVD alumina(Al2O3)as a top coat on 7YSZ TBCs against CMAS/VA infiltration:Deposition and reaction mechanisms[J].Journal of the European Ceramic Society,2018,38(9):3333-3346.

    • [17] SUN S Y,XUE Z L,HE W T,et al.Corrosion resistant plasma sprayed(Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate [J].Ceramics International,2019,45:8138-8144.

    • [18] KRAMER S,YANG J,LEVI C G.Infiltration Inhibiting re-action of gadolinium zirconate thermal barrier coatings with CMAS melts[J].Journal of the American Ceramic Society,2008,91(2):576-583.

    • [19] VASSEN R,CAO X,TIETZ F,et al.Zirconates as new ma-terials for thermal barrier coatings[J].Journal of the Ameri-can Ceramic Society,2004,83(8):2023-2028.

    • [20] JING W,GUN H B,GAO Y Z,et al.Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.

    • [21] WELLMAN R,WHITMAN G,NICHOLLS J R.CMAS cor-rosion of EB-PVD TBCs:Identifying the minimum level to initiate damage[J].International Journal of Refractory Met-als & Hard Materials,2010,28(1):124-132.

    • [22] LI L,HITCHMAN N,KNAPP J.Formation of solid splats during thermal spray deposition [J].Journal of Thermal Spray Technology,2009,18(2):148-180.

    • [23] GAO L H,GUO H B,GONG S K,et al.Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium – magne-sium – alumina – silicate penetration [J].Journal of the European Ceramic Society,2014,34(10):2553-2561.

    • [24] SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO – MgO – Al2O3 – SiO2)and volcanic ash deposits[J].Sur-face & Coatings Technology,2013,235:165-173.

    • [25] RAMACHANDRAN C S,BALASUBRAMANIAN V,ANAN-THAPADMANABHAN P V.Thermal cycling behaviour of plasma sprayed lanthanum zirconate based coatings under concurrent infiltration by a molten glass concoction[J].Ce-ramics International,2013,39(2):1413-1431.

    • [26] PENG H,WANG L,GUO L,et al.Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J].Pro-gress in Natural Science-Materials International,2012,22(5):461-467.

    • [27] LI L,HITCHMAN N,KNAPP J.Failure of thermal barrier coatings subjected to CMAS attack [J].Journal of Thermal Spray Technology,2010,19(1-2):148-155.

    • [28] 徐春辉.锆酸镧基热障涂层的制备及性能研究[D].武汉:中国地质大学,2018.XU C H.Preparation and properties of lanthanum zirconate series thermal barrier coatings[D].Wuhan:Journal of China University of Geosciences,2018(in Chinese).

    • [29] 亢永霞,白宇,刘琨,等.热障涂层的CMAS腐蚀失效及对策研究[J].稀有金属材料与工程,2017(1):286-292.KANG Y X,BAI Y,LIU K,et al.Corrosion failure mecha-nism of thermal barrier coatings after infiltration of cmas de-posits and countermeasure study [J].Rare Metal Materials And Engineering,2017(1):286-292(in Chinese).

    • [30] 苗文辉,王璐,郭洪波,等.CMAS 环境下电子束物理气相沉积热障涂层的热循环行为及失效机制[J].复合材料学报,2012(5):76-82.MIAO W H,WANG L,GUO H B,et al.Thermal cycling behavior and associated failure mechanism of EB-PVD ther-mal barrier coatings with CMAS deposits[J].Acta Materiae Compositae Sinica,2012(5):76-82(in Chinese).

    • [31] SHINOZAKI M,CLYNE T W.The effect of vermiculite on the degradation and spallation of plasma sprayed thermal bar-rier coatings [J].Surface & Coatings Technology,2013,216:172-177.

  • 手机扫一扫看