引用本文:赵飞1,2,李红轩1,吉利1,权伟龙1,2,周惠娣1,陈建敏1.掺硅类金刚石薄膜的制备与表征[J].中国表面工程,2010,(4):11~14
ZHAO Fei1,2, LI Hong–xuan1, JI Li1, QUAN Wei–long1,2, ZHOU Hui–di1, CHEN Jian–min1.Preparation and Characterization of Si–doped Diamond–like Carbon Films[J].China Surface Engineering,2010,(4):11~14
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3012次   下载 1839 本文二维码信息
码上扫一扫!
分享到: 微信 更多
掺硅类金刚石薄膜的制备与表征
赵飞1,2,李红轩1,吉利1,权伟龙1,2,周惠娣1,陈建敏11,2
1. 中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000;2. 中国科学院 研究生院,北京 100049
摘要:
利用射频等离子增强化学气相沉积(R.F. PECVD)与非平衡磁控溅射相结合的技术,通过调节甲烷与氩气的比例,在不锈钢基底上制备了一系列硅含量不同的掺硅类金刚石(Si–DLC)薄膜。通过XPS谱图获得了各Si–DLC薄膜的化学组成及Si元素的相对含量。采用非接触式三维轮廓仪测量了薄膜的表面形貌、粗糙度和厚度。采用纳米压痕技术获得了各薄膜的纳米硬度。在UMT–2MT摩擦试验机采用划痕法评价了各薄膜的结合强度,并在CSM摩擦试验机上考察了各薄膜在空气及水环境下的摩擦学性能。结果表明,各薄膜的纳米硬度和结合强度有相似的变化规律,其最佳值均出现在CH4/Ar=5/6处;而当CH4/Ar=7/6时,薄膜在水环境下的摩擦学性能能得到显著提高,摩擦因数仅为0.012。
关键词:  R.F.PE CVD  掺硅类金刚石薄膜  水环境  结合强度  摩擦因数
DOI:
分类号:
基金项目:国家自然科学基金 (50705093及50575217);国家自然科学基金委创新群体基金(50421502);国家“973”计划(2007 CB607601)
Preparation and Characterization of Si–doped Diamond–like Carbon Films
ZHAO Fei1,2, LI Hong–xuan1, JI Li1, QUAN Wei–long1,2, ZHOU Hui–di1, CHEN Jian–min11,2
1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;2. Graduate University of Chinese Academy of Sciences, Beijing 100049
Abstract:
Si–doped diamond–like carbon (Si–DLC) films with different Si content were deposited on stainless steel substrates using a hybrid radio frequency plasma–enhanced chemical vapor deposition (R.F. PECVD) and non–balanced magnetron sputtering deposition technique, by adjusting the mass flow ratio of CH4 to Ar in the source gases. Chemical composition as well as the relative atomic concentration of Si was obtained from XPS spectra. Surface topography, roughness and thickness of films were measured by employing a non–contact 3D surface profiler. Adhesion strength was evaluated on the UMT–2MT tribological tester and the tribological performances of the Si–DLC films in ambient air and water environments were investigated by using a CSM tribometer. The results revealed that both the nanohardness and the adhesion strength exhibited the optimum value at CH4/Ar=5/6, while the best tribological performance in water environment, with friction coefficient 0.012, was achieved at CH4/Ar=7/6.
Key words:  R.F. PECVD  Si–doped DLC  water environment  adhesion strength  friction coefficient
手机扫一扫看