关键词 搜索    
等离子体表面改性用于提高人工关节、椎间盘耐磨耐蚀性的研究进展
邓乔元 , 李延涛 , 经佩佩 , 龚艳丽 , 黄楠 , 冷永祥     
西南交通大学 材料科学与工程学院,成都 610031
摘要: 人工关节置换术和椎间盘置换术是目前治疗严重关节类疾病和椎间盘疾病的重要手段。人工关节和人工椎间盘在体内服役时,摩擦配副(关节头-关节臼、髓核-终板)需要往复运动数千万次,磨损产生的磨屑和腐蚀释放的有毒金属离子会导致关节假体松动、椎间盘假体下沉等临床并发症的发生。为了提高关节假体和椎间盘假体的耐磨损性能和耐腐蚀性能,研究者们采用等离子体表面改性技术在假体表面制备生物相容性好的陶瓷薄膜,希望显著延长关节和椎间盘假体寿命。文中综述了等离子体表面改性技术在提高人工关节、人工椎间盘耐磨损、耐腐蚀性能中的应用及存在的问题,总结了人工关节表面薄膜失效的主要机制,最后结合人工关节和人工椎间盘体内服役的特点,提出制备具有“体内磨损自修复功能”的薄膜来达到显著增加薄膜耐腐蚀、耐磨损性能的目的,从而延长活动金属植入假体在患者体内的服役寿命。当具有“体内磨损自修复功能”的薄膜改性假体在体内服役时,初始阶段的摩擦磨损会释放金属离子,从而促进生理介质中蛋白质等有机成分在磨痕表面沉积,在摩擦界面形成一层蛋白生物膜,这层蛋白生物膜在剪切力和金属离子催化作用下转变成为“类石墨碳润滑膜”,能够对磨痕进行修复和润滑,增加假体的耐磨损特性。
关键词: 人工关节    人工椎间盘    等离子体表面改性    金属离子    蛋白质    
Research Progress on Wear and Corrosion Resistance of Artificial Joint and Disc by Plasma Surface Modification
DENG Qiaoyuan , LI Yantao , JING Peipei , GONG Yanli , HUANG Nan , LENG Yongxiang     
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract: Total joint replacement (TJR) and total disc replacement (TDR) are widely used for the treatment of joint disease and spine disease in clinic, respectively. The tribo-pairs of artificial joint (ball-socket) and disc (nucleus-end plate) would repeat the circulating friction more than ten million cycles when serving in the body of the patients. The wear debris produced by the friction between the tribo-pairs and the metal ions released from the corrosion of prosthesis will cause many complications, such as aseptic loosing, disc subsidence. In order to prolong the lifespan of the artificial joint and spine, many types of ceramic films, prepared by plasma technology with good biocompatibility, have been used to enhance the corrosion and wear resistance of artificial joints and discs. The application and disadvantages of plasma surface modification on artificial joint and disc were introduced. The failure mechanism of ceramic film on the artificial joint surface was summarized. Concerning the service environment of the artificial discs and joints, we proposed to deposite the “friction induced self-healing film” on the surface of tribo-pairs to prolong the lifespan of the artificial joint and disc in the body of patients. When the “friction induced self-healing film” modified artificial discs or joints serving in human body, the wear between the tribo-pairs can release the metal ions from the films. The metal ions would bond with the proteins in the body fluid and promote the formation of protein-biofilm on the surface of the wear interface. This protein-biofilm could prevent body fluid permeate from defects to corrode the interface of the film and substrate. Meanwhile, the protein-biofilm would transform to be graphite-like carbon film by the synergism of the shear force between the tribo-pairs and the catalytic abilities of metal ions. This graphite-like carbon film can heal and lubricate the friction interface. As a result, the wear resistance of the film will be enhanced and the lifetime of the artificial discs and joints will be prolonged.
Keywords: artificial joint    artificial disc    plasma surface modification    metal ion    protein    
0 引 言

由于疾病、事故、社会老龄化趋势等因素的影响,关节、椎间盘类型的疾病受到人们越来越多的关注。当正常关节发生严重病变时,比如股骨头坏死、严重的关节炎等,会导致患者丧失正常活动能力。全关节置换术(Total joint replacement, TJR)是目前治疗严重关节疾病最直接有效的手段[1]。椎间盘切除融合术(Disckectomy fusion, DF)虽然已经成为治疗椎间盘突出等椎间盘退行性疾病的金标准[2],但是长期研究发现,DF手术会造成病变椎体的相邻脊椎运动异常,加速相邻椎体椎间盘退变,最终导致患者进行二次DF手术[3]。在20世纪60年代出现的全椎间盘置换术(Total disc replacement, TDR),由于其在治疗椎间盘疾病的基础上仍能保持相邻椎体的正常活动功能,受到了越来越多的关注[4-5]

1 人工关节、人工椎间盘临床使用现状及磨损机制 1.1 人工关节、人工椎间盘临床使用现状

人工关节假体主要包括人工髋关节、膝关节、肘关节、肩关节、踝关节、指关节等[6],其中髋关节是人体内主要的承重关节,是病变发生率最高的关节。人工髋关节需要在患者体内长期服役,因此要求植入的人工关节材料必须具有优异的生物相容性、良好的耐腐蚀、耐磨损特性以及抗疲劳特性[7]。目前已经成功应用于临床的人工关节材料主要包括:金属材料、陶瓷材料以及高分子材料[7-10]

目前临床使用的人工髋关节按照对磨副(关节头和关节臼)的组成材料不同,主要分为“硬对软”和“硬对硬”两大类,如图1所示。硬对软类型的人工关节主要包括金属-高分子(Metal-on-polymer, MoP)、陶瓷-高分子(Ceramic-on-polymer, CoP)两类,一般采用CoCrMo合金球头或氧化铝基复合陶瓷球头和聚乙烯臼杯(超高分子量聚乙烯、高交联度聚乙烯)作为摩擦配副。硬对软类型人工髋关节是目前临床使用量最大的人工髋关节[11],但是软相——聚乙烯材料会在长期的摩擦磨损作用下产生大量聚乙烯磨屑,诱发骨质溶解,造成假体晚期无菌性松动,导致假体植入失败[12]

图 1 人工髋关节摩擦配副种类[9] Fig. 1 Different bearings in artificial hip joint prosthesis[9]

硬对硬类型的人工关节主要包括陶瓷-陶瓷(Ceramic-on-ceramic, CoC)、金属-金属(Metal-on-metal, MoM)两类。MoM类型人工关节主要采用CoCrMo合金作为关节头和关节臼。CoCrMo合金具有良好的韧性,可以制备大直径的关节头,增加人工髋关节的摆动角度,但是MoM类型人工关节在体内长期服役过程中,在摩擦和腐蚀共同作用下会释放有毒重金属离子,可能诱发中毒、过敏、假瘤等并发症[13-16],所以这种类型的关节在2010年之后已经被强生、捷迈、史塞克等公司召回[17]。CoC关节采用氧化铝基复合陶瓷作为摩擦配副,具有良好的耐磨损、耐腐蚀特性。但是,CoC关节在服役过程中仍然存在碎裂的风险[18-19];此外,CoC关节在服役过程中容易产生“吱吱”的异响[20-21],给患者带来极大的不适感,使CoC类型的人工关节的临床应用受到影响。

近年来,也有研究者展开了“软对软”类型人工关节的研究,比如Cowie等[22]提出利用聚醚醚酮(PEEK)代替CoCrMo合金,和超高分子量聚乙烯组成对磨副构成PEEK-UHMWPE类型“软对软”关节配副,由于PEEK的弹性模量比CoCrMo合金的模量更小且更接近人体骨组织模量,因此这种人工关节配副相对于传统的关节而言会削弱应力遮挡效应,避免骨组织吸收导致的假体植入失败,此外高分子更容易加工成型,也有利于降低人工关节的生产成本,提高经济效益[23]

人工椎间盘材料和人工关节类似,都具有优异的生物相容性、良好的耐腐蚀耐磨损特性、较好的断裂韧性等材料学特性[24]。人工椎间盘材料主要有:金属材料、高分子材料以及陶瓷材料[4, 5, 25-27]

按照制造人工椎间盘终板和髓核材料的不同,目前临床应用的人工椎间盘主要分为金属对高分子(Metal-on-polymer, MoP)和金属对金属(Metal-on-metal, MoM)两大类,如图2所示。由于生理介质的腐蚀以及人工椎间盘终板、髓核的磨损,人工椎间盘在患者体内服役过程中会释放有毒金属离子、产生高分子磨屑,导致假体沉降、过敏等并发症的发生[3, 28-29]

图 2 人工椎间盘假体组成[5, 30-31] Fig. 2 Components of artificial disc prosthesis[5, 30-31]
1.2 人工关节、人工椎间盘磨损机制

材料之间的磨损机制主要有:粘着磨损、磨粒磨损、疲劳磨损等3种磨损机制[32]。人工关节在体内服役发生磨损时,通常是上述机制中2或3种机制共同作用产生的。Zhang等[33]通过关节模拟机对MoP关节在牛血清白蛋白(BSA)溶液中的进行摩擦磨损研究,结果如图3所示,由于聚乙烯和CoCrMo合金对磨副的表面粗糙度不匹配,在摩擦起始阶段导致应力集中,当摩擦界面剪切应力超过聚乙烯臼衬的抗拉强度时,便会导致聚乙烯产生裂纹并扩展(图3(b)(c)),最终由于摩擦副粘着作用导致“撕裂”的聚乙烯脱离基体,成为聚乙烯磨屑(图3(d))。A. Wimmer等[34-35]的研究表明MoM类型关节在蛋白溶液中磨损之初,由于金属摩擦界面的粘着,会造成CoCrMo合金中碳化物颗粒(如碳化铬(CrC)和碳化钼(MoC)等)被撕裂,碳化物颗粒在摩擦界面的反复挤压会加剧金属基体的疲劳磨损,造成MoM关节在服役后期出现磨损加剧的现象。CoC人工关节在服役过程中,摩擦配副之间的冲击会破坏陶瓷基体表面[36],导致陶瓷表面Al2O3晶粒断裂产生纳米陶瓷颗粒,陶瓷颗粒参与的三体磨损是造成陶瓷关节磨损的重要原因[37]

图 3 应力集中超高分子量聚乙烯表面磨屑形成过程[33] Fig. 3 Forming process of UHMWPE debris under the concentrative stress[33]

目前临床应用的人工椎间盘主要分为MoP和MoM两大类。对于MoP型人工椎间盘,只有较软的高分子被磨损[38],而且体外磨损试验表明MoP类型人工椎间盘中高分子髓核的磨损机制和人工关节类似,主要以粘着磨损和磨粒磨损为主[38]。对于MoM型人工椎间盘,S.M. Kurtz等[31]对回收于患者体内的20个MoM人工椎间盘观察分析,只在椎间盘结合中心附近发现沿着摩擦配副运动方向的划痕,作者认为该类型人工椎间盘的磨损机制以磨粒磨损为主。为了避免人工椎间盘在服役过程中释放金属离子,产生金属磨屑以及进一步增加人工椎间盘假体的使用寿命,目前已经有研究者开展高分子对高分子(Polymer-on-polymer, PoP)型人工椎间盘研究,常用的材料为PEEK-PEEK以及PEEK-UHMWPE类型配副组成人工椎间盘假体。Jian Song等[39]研究证明,PoP类型人工椎间盘磨损主要是由磨粒磨损、粘着磨损、疲劳磨损共同作用产生的。

2 等离子体表面改性用于改善人工假体材料耐磨耐蚀性能研究现状

目前为止,虽然人工关节和人工椎间盘的临床应用已经十分成功,但是金属假体的磨损和腐蚀仍然没有得到彻底解决。如何增加人工关节和人工椎间盘的耐磨损、耐腐蚀特性,延长人工关节和人工椎间盘的使用寿命,是众多研究者共同面对的难题。等离子体表面改性作为一种经济有效的技术手段,可以在不改变基体材料的前提下,通过表面离子注入或者薄膜沉积改善材料的耐磨损、耐腐蚀等特性[40],因此,等离子体表面改性已被用于人工关节、人工椎间盘等植入材料的研究、生产中。

2.1 等离子体离子注入

等离子体注入可以在不考虑材料热力学约束的条件下,将元素(通常以离子形式)以较高能量直接轰击注入到基体材料亚表面[40],从而提高金属基体表面硬度、改善金属基体耐磨损特性。A. Çelik[41-43]等对用于制备人工关节摩擦配副的CoCrMo合金或者Ti6Al4V合金表面进行氮离子注入,结果表明,氮离子注入金属后会在金属亚表面形成一层氮化物陶瓷(如CrxN、CoxN、TixN等),氮化物陶瓷可以明显增加金属基体表面硬度,改善金属基体的耐磨损特性。对CoCrMo合金基体进行碳离子[44]、氧离子[45]注入处理,也会使金属基体亚表面产生陶瓷相或者纳米晶,改善基体表面力学性能,增加基体的耐磨损性能。但是,离子注入层深度浅,随着磨损的进行,注入层被磨损完毕后,关节的耐磨损特性会明显下降[46];此外,等离子体注入有可能加重金属离子在溶液中的释放[47]。相比于等离子体注入而言,利用等离子体技术在金属摩擦配副表面制备一层无机薄膜来提高金属基体的耐磨损、耐腐蚀特性更具可行性,如采用物理气相沉积(PVD)技术在关节摩擦配副表面制备氮化物薄膜(TiN、TiNbN、TiAlN、CrN等)。

2.2 氮化物薄膜

20世纪90年代,研究者开始进行将机械、工业领域广泛应用的TiN薄膜用于人工关节金属(不锈钢、钛合金)关节头表面改性的可行性研究[48],研究表明,TiN薄膜可以明显提高316L不锈钢基体的耐腐蚀性,控制金属基体有毒金属离子的释放,从而改善316L不锈钢基体的生物相容性[49]。此外,TiN薄膜可以避免金属间发生粘着磨损,减少磨屑产生,增加金属基体耐磨损特性[50]。F.M. Alanagh等[51-52]发现在Ti6Al4V金属基体表面沉积TiSiN、SiN等氮化物陶瓷薄膜可以明显改善金属基体的耐腐蚀性能。20世纪末,TiN、TiNbN等氮化物薄膜改性的人工关节已经实现临床应用[53-55]图4所示为部分临床使用的氮化物薄膜表面改性人工关节假体。

图 4 临床使用氮化物陶瓷薄膜改性人工关节[56] Fig. 4 Nitride ceramic coating modified artificial joint used in clinic[56]

氮化物薄膜摩擦因数较大,研究发现,TiNbN薄膜改性的人工关节,在服役过程中薄膜磨损产生碎片,会造成严重的三体磨损,导致薄膜灾难性失效,从而严重影响人工关节的服役寿命[57-59]

2.3 类金刚石薄膜

类金刚石薄膜(Diamond-like carbon, DLC)是由sp2杂化和sp3杂化形式的碳原子按照不同比例结合而构成,因此DLC薄膜兼具了金刚石高硬度以及石墨良好润滑性的优点[60-61]。作为一种优异的固体润滑材料,DLC薄膜的生物相容性良好[62],且具有比TiN薄膜更优异的耐磨损性能[63]。有研究表明,DLC薄膜表面改性可以使金属假体耐腐蚀性能明显改善,显著降低金属假体金属离子的释放[64-65],所以DLC薄膜一直被认为是可用于提高人工假体体内耐腐蚀性、耐磨损特性的优良材料。自1993年DLC改性人工关节进行临床试验之后[66],多种DLC薄膜改性的人工假体材料被用于骨科植入手术[65, 67-68]。德国Spineart公司生产的BAGUERA®C人工椎间盘(如图5所示),作为一款DLC薄膜表面改性的人工椎间盘,于2007年进入临床试验,到2016年6月为止,已经成功植入超过1.5万套[69],目前这种人工椎间盘的植入2年后随访尚未出现不良反应[70]。但是DLC薄膜表面改性人工关节的临床应用效果并不理想,报告显示DLC薄膜表面改性的人工关节在临床使用8.5年后发生薄膜脱落的比例高达45%[66]图6所示为回收自患者体内已失效的DLC薄膜表面改性人工髋关节的关节头,可以看出,关节头表面DLC薄膜出现严重的大片剥落失效。这种薄膜大面积失效的现象导致Implant Design AG公司生产的DLC薄膜改性CoCrMo-超高分子量聚乙烯(Ultrahigh molecular weight polyethylene, UHMWPE)人工关节被瑞士联邦公共卫生办公室禁用[71]

图 5 Spineart BAGUERA®C结构图[71] Fig. 5 Structure of Spineart BAGUERA®C[71]
图 6 回收自患者体内的DLC薄膜改性CoCrMo合金关节头[66] Fig. 6 Retrieved DLC modified femoral head from patients[66]

研究发现,界面腐蚀和薄膜/基体结合力不足是导致DLC薄膜失效的重要原因[65, 72]。当薄膜改性的假体在患者体内长期服役时,如图7所示,体液中的离子会通过薄膜的缺陷或孔洞渗透到薄膜/基体界面处,腐蚀薄膜/基体界面,导致薄膜脱落[67, 73-74]。由于膜基界面腐蚀导致薄膜从关节摩擦界面发生脱落,造成严重的三体磨损,加剧UHMWPE的磨损,导致薄膜表面改性MoP类型关节的晚期失效[7, 66]

图 7 薄膜体内服役失效示意图[75] Fig. 7 Delamination mechanism of DLC film in vivo[75]

改善DLC薄膜表面改性人工关节在患者体内的服役稳定性,关键是阻止膜基界面腐蚀,降低DLC薄膜内应力,提高膜基结合力。增加过渡层、对DLC薄膜进行元素掺杂以及制备多层膜等方法常被研究者用来改善DLC薄膜的稳定性[76-79]Pang等[80]在沉积Ti-DLC薄膜之前,先沉积AlTiN过渡层,使Ti-DLC薄膜结合强度提高约50%。有研究表明,对DLC薄膜进行N元素掺杂,可以增加薄膜内部Csp2键含量,减小薄膜内应力,增加膜基结合力[81-83]。将能与碳成键的金属元素掺杂进入DLC薄膜中,如Ti[84]、Cr[76]、Mo[78]等元素,在DLC薄膜中形成金属-碳(Me-C)化合物,可以减少DLC薄膜内部缺陷,降低薄膜应力,增加DLC薄膜的膜基结合力。Z.Y. Xu等[85]研究发现,DLC/TiC多层膜与同厚的单层DLC薄膜相比应力明显降低,膜基结合力明显提高。此外,Z.X. Wan等[86]发现通过在304不锈钢表面制备多层复合薄膜,可以有效减少薄膜外表面到膜基界面的通孔,能延长溶液通过缺陷渗透到膜基界面处的时间,进而明显改善基体的耐腐蚀性能。

虽然通过掺杂元素、制备多层薄膜等手段,可以有效降低DLC薄膜的内应力,增加薄膜的膜基结合力,减少薄膜内部的缺陷或通孔,改善DLC薄膜的耐腐蚀性能。但是薄膜改性的人工关节在患者体内长期服役过程中,仍然会发生磨损作用,此外生理介质长期浸泡渗透也会造成界面腐蚀,导致薄膜失效。所以,如何在减小薄膜内应力,改善膜基结合力的基础上,进一步增加薄膜的润滑性,提高薄膜阻止生理介质渗透的能力,仍然是薄膜改性金属关节在实际应用中需要解决的问题。

3 具有体内磨损自修复功能薄膜的设计与研究现状 3.1 摩擦配副表面形成摩擦层

人工关节、人工椎间盘等人工假体材料在患者体内服役时,生理介质中的蛋白质等生物大分子对摩擦配副的摩擦磨损过程有重要影响。M.A. Wimmer等人利用金属对金属作为摩擦副在白蛋白溶液中进行摩擦磨损试验,发现摩擦界面出现一层“摩擦化学反应层”(Tribochemical reaction layers)。作者认为这层摩擦反应层是由蛋白质的变性分解形成的,可以有效防止金属之间的粘着,减缓金属之间的磨损[34, 87]。Liao等[88]对回收自患者体内的金属关节假体研究发现,金属假体摩擦界面存在一层“摩擦层”(Tribological layer),他认为这层摩擦层主要是关节滑液中的蛋白质在金属离子和剪切力共同作用下形成的,这层“摩擦层”可以降低金属假体磨损、减少金属离子释放[88]。E.J. Martin等[89-90]研究发现,Mo元素可以对金属-金属表面形成“摩擦层”起到催化作用。M.A. Wimmer等认为,关节摩擦配副摩擦界面快速形成这层摩擦层可以有效延长假体的使用寿命[91]。作者研究了白蛋白溶液中Al2O3/Cu和Al2O3/Co合金的摩擦磨损行为,结果表明,Al2O3/Cu的摩擦界面比Al2O3/Co合金界面处更快产生“摩擦层”,由于该“摩擦层”内部包含石墨结构,其拉曼检测结果和无定形碳类似,所以也可以称之为“类石墨碳润滑层”,“类石墨碳润滑层”的出现,有效降低了摩擦配副之间的磨损[92]

3.2 具有体内磨损自修复功能薄膜

为了降低人工关节、人工椎间盘体内服役时摩擦界面的磨损及金属离子的释放,基于人工关节、人工椎间盘体内服役的特殊生理环境(存在白蛋白、球蛋白等蛋白质),文中提出“体内磨损自修复”概念,即植入人体内的运动部件在体内服役时,体内环境中的蛋白质等有机大分子在摩擦力及界面物理化学共同作用下分解,在摩擦界面形成润滑层或者保护层,修复摩擦界面,延缓或者阻止运动部件的磨损及离子的释放,延长运动部件的寿命。利用等离子体表面改性技术,在人工关节摩擦配副表面制备具有体内磨损自修复功能的薄膜(能促进“类石墨碳润滑层”形成的金属掺杂陶瓷薄膜),使其在摩擦磨损过程中通过四个阶段实现对磨痕的润滑和修复作用。以掺杂金属Cu的Ti(Cu)N薄膜为例,Ti(Cu)N薄膜表面改性人工关节摩擦配副表面体内磨损自修复过程如图8所示,其在体内服役时,第I阶段,掺金属Ti(Cu)N薄膜的磨损过程,会缓慢释放出薄膜内部的Cu金属离子;第Ⅱ阶段,释放出的Cu金属离子会扩散进入关节滑液中并和关节滑液中的蛋白质结合或者反应;第III阶段,在金属Cu离子作用下,关节滑液中的蛋白质构象发生改变,蛋白质变性,吸附到摩擦界面处,形成蛋白生物膜;第IV阶段,摩擦界面形成的蛋白生物膜在摩擦配副摩擦剪切力和金属离子共同作用下发生断键重组,在摩擦界面处形成“类石墨碳润滑层”,对磨损部位起到润滑、修复的作用。文中将在体内服役材料的上述4个过程称为“体内磨损自修复”过程。将具有“体内磨损自修复”功能的薄膜用于人工关节以及人工椎间盘表面改性,使植入假体通过图8所示4个阶段在摩擦界面形成“类石墨碳润滑层”,一方面“类石墨碳润滑层”可以对假体摩擦配副磨损部位进行润滑和修复作用;另一方面“类石墨碳润滑层”可以有效覆盖磨痕内部的微孔等缺陷,进而阻止生理介质通过磨痕内部的微孔等缺陷渗透到膜基界面处腐蚀界面。

图 8 薄膜体内磨损自修复过程示意图 Fig. 8 Self-healing process of films during the friction in vivo
4 总结与展望

人工关节、人工椎间盘等运动型人工假体在我国的需求量逐年递增。MoP和CoP类型关节,由于其良好的生物相容性以及稳定性,仍然是目前临床使用量最大的人工关节,虽然目前有较多的高分子臼衬选用耐磨性更好的高交联度聚乙烯制备,但是其服役寿命仍然受到晚期假体无菌性松动的制约。自第四代关节陶瓷面世以来,CoC类型人工关节的市场占有率逐渐提升,但是其材料的特性决定了CoC类型关节始终有碎裂的风险,而且在使用过程中易产生“吱吱”异响,影响患者生活。MoM类型人工关节由于Co合金具有较高强度和韧性,可以制备大直径的关节头,特别适用于年轻或者活动度大的患者,但是其后期产生的有毒金属离子以及金属磨屑是限制其使用的主要原因。含有金属终板的人工椎间盘长期在体内服役,也存在释放有毒金属离子的风险。为了提高假体的耐磨损性能和耐腐蚀性能,研究者们采用等离子体表面改性技术在假体表面制备生物相容性好的陶瓷薄膜,希望显著延长假体寿命。

随着现代社会的发展,关节、腰椎、颈椎患者的增多及年轻化,以及人们对高生活质量的追求,患者对临床应用的人工关节、人工椎间盘提出长寿命和高可靠性的要求。基于人工关节、人工椎间盘体内服役的特殊生理环境(存在白蛋白、球蛋白等蛋白质),文中提出“体内磨损自修复”概念,即植入人体内的运动部件在体内服役时,体内环境中的蛋白质等有机大分子在摩擦力及界面物理化学共同作用下分解,在摩擦界面形成润滑层或者保护层,修复摩擦界面,延缓或者阻止运动部件的磨损及离子的释放,延长运动部件的寿命。如果能够在金属关节或人工椎间盘金属终板表面通过等离子体表面改性手段,制备具有“体内磨损自修复功能”的薄膜,降低人工关节、人工椎间盘的磨损及金属离子的释放,那么金属关节和人工椎间盘的使用安全性和使用寿命就能得到明显改善,这将推动国内人工关节、人工椎间盘产业的发展。

参考文献
[1] LEHIL M S, BOZIC K J. Trends in total hip arthroplasty implant utilization in the United States[J]. The Journal of Arthroplasty, 2014, 29: 1915-1918.
点击浏览原文
[2] MEISEL H J, JURAK L, ANTINHEIMO J, et al. Four-year results of a prospective single-arm study on 200 semi-constrained total cervical disc prostheses: Clinical and radiographic outcome[J]. Journal of Neurosurgery Spine, 2016, 25(5): 556-565.
点击浏览原文
[3] 白文媛, 顾洪生, 廖振华, 等. 人工腰椎间盘假体设计原理与研究进展[J]. 中国组织工程研究, 2013, 17(39): 6978-6984.
BAI W Y, GU H S, LIAO Z H, et al. Design principle and research development of artificial lumbar disc prosthesis[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(39): 6978-6984.
点击浏览原文
[4] SZPALSKI M, GUNZBURG R, MAYER M. Spine arthroplasty: a historical review[J]. European Spine Journal, 2002, 11(S2): S65-84.
点击浏览原文
[5] VITAL J M, BOISSIERE L. Total disc replacement[J]. Orthopaedics & Traumatology, Surgery & Research: OTSR, 2014, 100(S1): S1-14.
点击浏览原文
[6] 刘亚军. 国产人工关节产品新进展[J]. 中国医疗设备, 2015, 30(10): 18-19.
LIU Y J. New Progress in domestic artifcial joint products[J]. China Medical Devices, 2015, 30(10): 18-19 (in Chinese).
点击浏览原文
[7] KHANNA R, ONG J, ORAL E, et al. Progress in wear resistant materials for total hip arthroplasty[J]. Coatings, 2017, 7(7): 1-23.
[8] MEROLA M, AFFATATO S. Materials for hip prostheses: A review of wear and loading considerations[J]. Materials (Basel), 2019, 12(3): 1-24.
[9] DI PUCCIO F, MATTEI L. Biotribology of artificial hip joints[J]. World Journal of Orthopedics, 2015, 6(1): 77-94.
点击浏览原文
[10] 张鑫, 陈辉, 陈凯. 锻造CoCrMo合金关节材料的滑动摩擦腐蚀行为[J]. 中国表面工程, 2016, 29(2): 43-48.
ZHANG X, CHEN H, CHEN K. Sliding tribocorrosion behavior of forged CoCrMo alloy for artificial joint materials[J]. China Surface Engineering, 2016, 29(2): 43-48 (in Chinese).
点击浏览原文
[11] BEDARD N A, BURNETT R A, DEMIK D E, et al. Are trends in total hip arthroplasty bearing surface continuing to change? 2007-2015 usage in a large database cohort[J]. The Journal of Arthroplasty, 2017, 32(12): 3777-3781.
点击浏览原文
[12] CHETHAN K N, SATISH S B, SHYAMASUNDER B N. Role of different orthopedic biomaterials on wear of hip joint prosthesis: A review[J]. Materials Today: Proceedings, 2018, 5(10): 20827-20836.
点击浏览原文
[13] HALLAB N, JACOBS J J, BLACK J. Hypersensitivity to metallic biomaterials: A review of leukocyte migration inhibition assays[J]. Biomaterials, 2000, 21: 1301-1314.
点击浏览原文
[14] POSADA O M, TATE R J, GRANT M H. Effects of CoCr metal wear debris generated from metal-on-metal hip implants and Co ions on human monocyte-like U937 cells[J]. Toxicology in Vtro, 2015, 29(2): 271-280.
点击浏览原文
[15] ANSARI J S, MATHARU G S, PANDIT H. Metal-on-metal hips: current status[J]. Orthopaedics and Trauma, 2018, 32(1): 54-60.
点击浏览原文
[16] PANDIT H, GLYN-JONES S, MCLARDY-SMITH P, et al. Pseudotumours associated with metal-on-metal hip resurfacings[J]. Journal of Bone & Joint Surgery British Volume, 2008, 90(7): 847-851.
[17] KUNČICK L, KOCICH R, LOWE T C. Advances in metals and alloys for joint replacement[J]. Progress in Materials Science, 2017, 88: 232-280.
点击浏览原文
[18] 周驰, 何伟, 刘予豪, 等. 第4代全陶瓷全髋关节置换后陶瓷部件碎裂的因素分析[J]. 中国组织工程研究, 2018, 22(35): 5577-5582.
ZHOU C, HE W, LIU Y H, et al. Factors related to the fragmentation of ceramic components after fourth-generation ceramic-on-ceramic total hip arthroplasty[J]. Chinese Journal of Tissue Engineering Research, 2018, 22(35): 5577-5582 (in Chinese).
点击浏览原文
[19] LEE G C, KIM R H. Incidence of modern alumina ceramic and alumina matrix composite femoral head failures in nearly 6 million hip implants[J]. The Journal of Arthroplasty, 2017, 32(2): 546-551.
点击浏览原文
[20] STANAT S J, CAPOZZI J D. Squeaking in third- and fourth-generation ceramic-on-ceramic total hip arthroplasty: meta-analysis and systematic review[J]. The Journal of Arthroplasty, 2012, 27(3): 445-453.
点击浏览原文
[21] OWEN D, RUSSELL N, CHIA A, et al. The natural history of ceramic-on-ceramic prosthetic hip squeak and its impact on patients[J]. European Journal of Orthopaedic Surgery & Traumatology, 2012, 24(1): 57-61.
[22] COWIE R M, BRISCOE A, FISHER J, et al. PEEK-OPTIMATM as an alternative to cobalt chrome in the femoral component of total knee replacement: A preliminary study[J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 2016, 230(11): 1008-1015.
点击浏览原文
[23] COWIE R M, BRISCOE A, FISHER J, et al. Wear and friction of UHMWPE-on-PEEK OPTIMATM[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89: 65-71.
点击浏览原文
[24] ONG K, YUN M, WHITE J. New biomaterials for orthopedic implants[J]. Orthopedic Research and Reviews, 2015, 7: 107-130.
点击浏览原文
[25] SHANKAR S, KESAVAN D. Wear prediction of the lumbar total disc replacement using finite element method[J]. Journal of Mechanics in Medicine and Biology, 2016, 16(2): 1650004.
点击浏览原文
[26] RAHAMAN M, XIAO W. Silicon nitride bioceramics in healthcare[J]. International Journal of Applied Ceramic Technology, 2018, 15(4): 861-872.
点击浏览原文
[27] PICONI C. Bioinert ceramics: State-of-the-art[J]. Key Engineering Materials, 2017, 758: 3-13.
点击浏览原文
[28] MOGHADAS P, MAHOMED A, HUKINS D W, et al. Friction in metal-on-metal total disc arthroplasty: effect of ball radius[J]. J Biomech, 2012, 45(3): 504-509.
点击浏览原文
[29] KURTZ S M, TOTH J M, SISKEY R, et al. The latest lessons learned from retrieval analyses of ultra-high molecular weight polyethylene, metal-on-metal, and alternative bearing total disc replacements[J]. Seminars in Spine Surgery, 2012, 24(1): 57-70.
点击浏览原文
[30] 张传健, 丁坦, 王哲, 等. 人工颈椎间盘置换术临床应用探讨与存在问题[J]. 中国矫形外科杂志, 2017, 25(5): 442-447.
ZHANG C J, DING T, WANG Z, et al. Early results and review of the literature of artificial cervical disc replacement[J]. Orthopedic Journal of China, 2017, 25(5): 442-447 (in Chinese).
点击浏览原文
[31] ALVIN M D, ABBOTT E E, LUBELSKI D, et al. Cervical arthroplasty: a critical review of the literature[J]. The Spine Journal : Official Journal of the North American Spine Society, 2014, 14(9): 2231-2245.
点击浏览原文
[32] BAUER T W, SCHILS J. The pathology of total joint arthroplasty II. Mechanisms of implant failure[J]. Skeletal Radiology, 1999, 28: 483-497.
点击浏览原文
[33] ZHANG D, LIU H, WANG J, et al. Wear mechanism of artificial joint failure using wear debris analysis[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(10): 6805-6814.
点击浏览原文
[34] WIMMER M A, LOOS J, NASSUTT R, et al. The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results[J]. Wear, 2001, 250: 1219-1139.
[35] GISPERT M P, SERRO A P, COLA O R, et al. Friction and wear mechanisms in hip prosthesis: Comparison of joint materials behaviour in several lubricants[J]. Wear, 2006, 260(1-2): 149-158.
点击浏览原文
[36] PERRICHON A, LIU B H, CHEVALIER J, et al. Ageing, shocks and wear mechanisms in ZTA and the long-term performance of hip joint materials[J]. Materials (Basel), 2017, 10(6): 569.
点击浏览原文
[37] ZENG P, RAINFORTH W M, STEWART T D. Characterisation of the wear mechanisms in retrieved alumina-on-alumina total hip replacements[J]. Wear, 2017, 376-377: 212-222.
点击浏览原文
[38] HALLAB N J, SINGH V. Intervertebral disc joint replacement technology[J]. Joint Replacement Technology, 2014: 531-570.
点击浏览原文
[39] SONG J, XIANG D, WANG S, et al. In vitro wear study of PEEK and CFRPEEK against UHMWPE for artificial cervical disc application[J]. Tribology International, 2018, 122: 218-227.
点击浏览原文
[40] CHUA P K, CHEN J Y, WANG L P, et al. Plasma-surface modification of biomaterials[J]. Materials Science and Engineering R, 2002, 36: 143-206.
点击浏览原文
[41] ÇELIK A, BAYRAK Ö, ALSARAN A, et al. Effects of plasma nitriding on mechanical and tribological properties of CoCrMo alloy[J]. Surface & Coatings Technology, 2008, 202: 2433-2438.
点击浏览原文
[42] WEI R, BOOKER T, RINCON C, et al. High-intensity plasma ion nitriding of orthopedic materials Part I. Tribological study[J]. Surface & Coatings Technology, 2004, 186: 305-313.
点击浏览原文
[43] SAMANTA A, BHATTACHARYA M, RATHA I, et al. Nano- and micro-tribological behaviours of plasma nitrided Ti6Al4V alloys[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77: 267-294.
点击浏览原文
[44] LIU C, ZHOU Z, SHUM P, et al. Surface gradient CoCrMo alloy generated by carbon ion implantation with enhanced tribocorrosion resistance[J]. Surface & Coatings Technology, 2017, 320: 590-594.
点击浏览原文
[45] GARC A J A, D AZ C, M NDL S, et al. Tribological improvements of plasma immersion implanted CoCr alloys[J]. Surface & Coatings Technology, 2010, 204(18-19): 2928-2932.
点击浏览原文
[46] 代新祥, 陈晓明, 李世普. 人工关节的发展及未来[J]. 武汉工业大学学报, 1998, 20(4): 12-14.
DAI X X, CHEN X M, LI S P. The development of the research on artificial joints[J]. Journal of Wuhan University of Techonology, 1998, 20(4): 12-14 (in Chinese).
点击浏览原文
[47] ÖZT RK O, T RKAN U U, EROGˇLU A E. Metal ion release from nitrogen ion implanted CoCrMo orthopedic implant material[J]. Surface & Coatings Technology, 2006, 200(20-21): 5687-5697.
点击浏览原文
[48] COLL B F, JACQUOT P. Surface modification of medical implants and surgical devices using TiN layers[J]. Surface & Coatings Technology, 1988, 36(3-4): 867-878.
点击浏览原文
[49] ZUO J, XIE Y, ZHANG J, et al. TiN coated stainless steel bracket: Tribological, corrosion resistance, biocompatibility and mechanical performance[J]. Surface & Coatings Technology, 2015, 277: 227-233.
点击浏览原文
[50] EGE D, DURU İ, KAMALI A R, et al. Nitride, zirconia, alumina, and carbide coatings on Ti6Al4V femoral heads: Effect of deposition techniques on mechanical and tribological properties[J]. Advanced Engineering Materials, 2017, 19(11): 1700177.
点击浏览原文
[51] MOVASSAGH A F, ABDOLLAH-ZADEH A, ALIOFKHAZRAEI M, et al. Improving the wear and corrosion resistance of Ti-6Al-4V alloy by deposition of TiSiN nanocomposite coating with pulsed-DC PACVD[J]. Wear, 2017, 390-391: 93-103.
点击浏览原文
[52] PETTERSSON M, BERLIND T, SCHMIDT S, et al. Structure and composition of silicon nitride and silicon carbon nitride coatings for joint replacements[J]. Surface & Coatings Technology, 2013, 235: 827-834.
点击浏览原文
[53] FALEZ F, CAVA F L, PANEGROSSI G. Femoral prosthetic heads and their significance in polyethylene wear[J]. International Orthopaedics, 2000, 24: 126-129.
点击浏览原文
[54] MCENTIRE B J, BAL B S, RAHAMAN M N, et al. Ceramics and ceramic coatings in orthopaedics[J]. Journal of the European Ceramic Society, 2015, 35(16): 4327-4369.
点击浏览原文
[55] GISPERT M P, SERRO A P, COLA O R, et al. Wear of ceramic coated metal-on-metal bearings used for hip replacement[J]. Wear, 2007, 263(7-12): 1060-1065.
点击浏览原文
[56] Products for medical professionals [EB/OL]. [2019.03.19].https://www.implantcast.de/en/.
[57] BONE M C, CUNNINGHAM J L, LORD J, et al. Analysis of failed Van Straten LPM proximal interphalangeal prostheses[J]. The Journal of Hand Surgery, European Volume, 2013, 38(3): 313-320.
点击浏览原文
[58] BONE M C and NAYLOR A. Failure of an ACCIS metal-on-metal hip resurfacing prosthesis: A case report[J]. Proceedings of the Institution of Mechanical Engineers, 2017, 231(12): 1188-1194.
点击浏览原文
[59] FIELD J. Two to five year follow-up of the LPM ceramic coated proximal interphalangeal joint arthroplasty[J]. The Journal of Hand Surgery, 2008, 33(1): 38-44.
点击浏览原文
[60] AL MAHMUD K A H, KALAM M A, MASJUKI H H, et al. An updated overview of diamond-like carbon coating in tribology[J]. Critical Reviews in Solid State and Materials Sciences, 2014, 40(2): 90-118.
点击浏览原文
[61] ZAHID R, HASSAN M B H, VARMAN M, et al. A review on effects of lubricant formulations on tribological performance and boundary lubrication mechanisms of non-doped DLC/DLC contacts[J]. Critical Reviews in Solid State and Materials Sciences, 2016, 42(4): 267-294.
点击浏览原文
[62] DAS T, GHOSH D, BHATTACHARYYA T K, et al. Biocompatibility of diamond-like nanocomposite thin films[J]. Journal of Materials Science. Materials in Medicine, 2007, 18(3): 493-500.
点击浏览原文
[63] ÖSTERLE W, KLAFFKE D, GRIEPENTROG M, et al. Potential of wear resistant coatings on Ti-6Al-4V for artificial hip joint bearing surfaces[J]. Wear, 2008, 264(7-8): 505-517.
点击浏览原文
[64] ZHANG T F, DENG Q Y, LIU B, et al. Wear and corrosion properties of diamond like carbon (DLC) coating on stainless steel, CoCrMo and Ti6Al4V substrates[J]. Surface & Coatings Technology, 2015, 273: 12-19.
点击浏览原文
[65] LOVE C A, COOK R B, HARVEY T J, et al. Diamond like carbon coatings for potential application in biological implants-a review[J]. Tribology International, 2013, 63: 141-150.
点击浏览原文
[66] TAEGER G, PODLESKA L E, SCHMIDT B, et al. Comparison of diamond-like-carbon and alumina-oxide articulating with polyethylene in total hip arthroplasty[J]. Materialwissenschaft and Werkstofftechnik, 2003, 34(12): 1094-1100.
点击浏览原文
[67] JOYCE T J. Examination of failed ex vivo metal-on-metal metatarsophalangeal prosthesis and comparison with theoretically determined lubrication regimes[J]. Wear, 2007, 263(7-12): 1050-1054.
点击浏览原文
[68] HAUERT R. A review of modified DLC coatings for biological applications[J]. Diamond and Related Materials, 2003, 12: 583-589.
点击浏览原文
[69] 15000 BAGUERA®C IMPLANTED [EB/OL]. [2019.03.19].http://www.spineart.com.
[70] Two-years prospective clinical follow-up [EB/OL]. [2019.03.19]http://www.spineart.com.
[71] BENMEKHBI M, MORTADA J, LUNGU G, et al. Baguera cervical disc prosthesis[J]. Interactive Surgery, 2008, 3(4): 201-204.
点击浏览原文
[72] HAUERT R, THORWARTH K, THORWARTH G. An overview on diamond-like carbon coatings in medical applications[J]. Surface & Coatings Technology, 2013, 233: 119-130.
[73] CHANDRA L, ALLEN M, BUTTER R, et al. The effect of exposure to biological fluids on the spallation resistance of diamond-like carbon coatings on metallic substrates[J]. Journal of Materials Science Materials in Medicine, 1995, 6(10): 581-589.
点击浏览原文
[74] 邓乔元, 张腾飞, 武冰洁, 等. 类金刚石薄膜在人工关节摩擦配副表面改性的应用[J]. 表面技术, 2016, 45(5): 1-7.
DENG Q Y, ZHANG T F, WU B J, et al. Diamond-like carbon film and its application on articular surface of artificial joint for increasing wear resistance[J]. Surface Technology, 2016, 45(5): 1-7 (in Chinese).
点击浏览原文
[75] FALUB C V, M LLER U, THORWARTH G, et al. In vitro studies of the adhesion of diamond-like carbon thin films on CoCrMo biomedical implant alloy[J]. Acta Materialia, 2011, 59(11): 4678-4689.
点击浏览原文
[76] JELINEK M, KOCOUREK T, ZEMEK J, et al. Chromium-doped DLC for implants prepared by laser-magnetron deposition[J]. Materials Science & Engineering C, Materials for Biological Applications, 2015, 46: 381-386.
[77] PARK C, LEE J, PARK Y S. Thickness effects of TiC interlayer on tribological properties of diamond-like carbon prepared by unbalanced magnetron sputtering method[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(11): 9009-9013.
点击浏览原文
[78] TANG X S, WANG H J, FENG L, et al. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties[J]. Applied Surface Science, 2014, 311: 758-762.
点击浏览原文
[79] 谭笛, 代明江, 林松盛, 等. CoCrMo合金表面掺金属类金刚石薄膜的摩擦学性能[J]. 中国表面工程, 2014, 27(1): 75-80.
TAN D, DAI M J, LIN S S, et al. Tribological performance of metal doped diamond-like carbon films deposited on CoCrMo Alloy[J]. China Surface Engineering, 2014, 27(1): 75-80 (in Chinese).
点击浏览原文
[80] PANG X, YANG H, GAO K, et al. AlTiN layer effect on mechanical properties of Ti-doped diamond-like carbon composite coatings[J]. Thin Solid Films, 2011, 519(16): 5353-5357.
点击浏览原文
[81] BOOTKUL D, SUPSERMPOL B, SAENPHINIT N, et al. Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by filtered cathodic vacuum arc (FCVA) technique[J]. Applied Surface Science, 2014, 310: 284-292.
点击浏览原文
[82] RAY S C, PONG W F, PAPAKONSTANTINOU P. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study[J]. Thin Solid Films, 2016, 610: 42-47.
点击浏览原文
[83] ROBERTSON J. Diamond-like amorphous carbon[J]. Materials Science and Engineering R, 2002, 37: 129-281.
点击浏览原文
[84] BAI W Q, LI L L, WANG X L, et al. Effects of Ti content on microstructure, mechanical and tribological properties of Ti-doped amorphous carbon multilayer films[J]. Surface & Coatings Technology, 2015, 266: 70-78.
点击浏览原文
[85] XU Z, SUN H, LENG Y X, et al. Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J]. Applied Surface Science, 2015, 328: 319-324.
点击浏览原文
[86] WAN Z, ZHANG T F, LEE H B, et al. Improved corrosion resistance and mechanical properties of CrN hard coatings with an atomic layer deposited Al2O3 interlayer[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26716-26725.
点击浏览原文
[87] WIMMER M A, SPRECHER C, HAUERT R, et al. Tribochemical reaction on metal-on-metal hip joint bearings: A comparison between in-vitro and in-vivo results[J]. Wear, 2003, 255: 1007-1014.
点击浏览原文
[88] LIAO Y, POURZAL R, WIMMER M A, et al. Graphitic tribological layers in metal-on-metal hip replacements[J]. Science, 2011, 334: 1687-1690.
点击浏览原文
[89] MARTIN E J, POURZAL R, MATHEW M T, et al. Dominant role of molybdenum in the electrochemical deposition of biological macromolecules on metallic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(15): 4813-4822.
点击浏览原文
[90] POURZAL R, MARTIN E J, VAJPAYEE S, et al. Investigation of the role of tribofilms in self-mating CoCrMo systems utilizing a quartz crystal microtribometer[J]. Tribology International, 2014, 72: 161-171.
点击浏览原文
[91] WIMMER M A, LAURENT M P, MATHEW M T, et al. The effect of contact load on CoCrMo wear and the formation and retention of tribofilms[J]. Wear, 2015, 332-333: 643-649.
点击浏览原文
[92] DENG Q Y, GONG Y L, JING P P, et al. Formation of a carbonaceous film on the surface of Cu in a bovine serum albumin solution[J]. Surface & Coatings Technology, 2019, 358: 611-616.
点击浏览原文
http://dx.doi.org/10.11933/j.issn.1007-9289.20190403001
中国科协主管,中国机械工程学会主办。
0

文章信息

邓乔元, 李延涛, 经佩佩, 龚艳丽, 黄楠, 冷永祥
DENG Qiaoyuan, LI Yantao, JING Peipei, GONG Yanli, HUANG Nan, LENG Yongxiang
等离子体表面改性用于提高人工关节、椎间盘耐磨耐蚀性的研究进展
Research Progress on Wear and Corrosion Resistance of Artificial Joint and Disc by Plasma Surface Modification
中国表面工程, 2019, 32(5): 1-12.
China Surface Engineering, 2019, 32(5): 1-12.
http://dx.doi.org/10.11933/j.issn.1007-9289.20190403001

文章历史

收稿日期: 2019-04-03
修回日期: 2019-07-23

工作空间