关键词 搜索    
低Si含量WSiN涂层的结构和摩擦学行为
李科1,2, 邵涛2, 葛芳芳2, 黄峰2, 冯庆1     
1. 重庆师范大学 物理与电子工程学院,重庆 401331;
2. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,宁波 315201
摘要: 利用反应磁控溅射法制备W2N和WSiN涂层,利用XRD,SEM和AFM研究涂层的显微结构,利用纳米压痕仪测试涂层的力学性能,利用摩擦磨损仪表征涂层的摩擦磨损行为。结果表明,原子数分数2.4% Si掺杂没有引起W2N涂层相结构和力学性能的明显变化,但降低了涂层的表面粗糙度(从10.56 nm到8.35 nm)。不锈钢基底、W2N涂层、WSiN涂层与Al2O3对偶球的摩擦因数分别为0.62、0.42和0.35,对应的磨损率分别为4.2×10−14、3.8×10−16和3×10−16 m3/N·m。不锈钢基底、W2N涂层、WSiN涂层与GCr15对偶球的摩擦因数分别为0.56、0.47和0.49,对应的磨损率分别为5.9×10−15、2.8×10−16和3.2×10−16 m3/N·m。在上述两种对偶球情况下,W2N涂层、WSiN涂层均能够降低不锈钢的摩擦因数10%~40%和磨损率1~2个量级。W2N涂层和WSiN涂层具有较好的润滑抗磨性,能给不锈钢基底提供防护作用,且WSiN涂层的防护效果更佳。
关键词: WSiN涂层     磁控溅射     摩擦学行为    
Structure and Tribological Behavior of WSiN Coatings with Low Content of Si
LI Ke1,2, SHAO Tao2, GE Fangfang2, HUANG Feng2, FENG Qing1     
1. College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China;
2. Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Fund: Supported by National Natural Science Foundation of China (61274128) and Natural Science Foundation of Chongqing (CSTC2013JCYJA0731)
Abstract: W2N coating and WSiN coating (with 2.4% Si) were prepared by magnetron sputtering. Microstructure of the coatings was investigated by XRD, SEM, and AFM. Mechanical properties of the coatings were measured by nanoindentation. The tribological behavior of the coatings was evaluated by pin-on-disk tribo-tests. The results show that the two coatings have similar phase structures and mechanical properties, however, the WSiN coating have a smoother surface, with the average surface roughness of about 8.35 nm, lower than that of the W2N coating (about 10.56 nm). During the tribo-tests against the Al2O3 counterpart, the friction coefficients of the stainless steel substrate, the W2N coating, and the WSiN coating are 0.62, 0.42, and 0.35, respectively. The corresponding wear rates are 4.2×10−14 m3/N·m, 3.8×10−16 m3/N·m, and 3×10−16 m3/N·m, respectively. During the tribo-tests against the GCr15 counterpart, the friction coefficients of the stainless steel substrate, the W2N, and the WSiN coating are 0.56, 0.47, and 0.49, respectively. The corresponding wear rates are 5.9×10−15 m3/N·m, 2.8×10−16 m3/N·m, and 3.2×10−16 m3/N·m, respectively. The friction coefficients of the substrate decrease by 10%−40%, and the wear rates of the substrate decrease by 1−2 orders of magnitude. With the lubrication effect and the high wear resistance, the W2N coating and the WSiN coating can provide the protection for the stainless steel substrate. Furthermore, the protective capability of the WSiN coating is relatively higher than that of the W2N coating.
Keywords: WSiN coatings     magnetron sputtering     tribological behavior    
0 引 言

TM-Si-N是指在过渡金属氮化物TM-N (TM=Ti,Cr,Zr,V,W)中掺杂硅(Si)元素形成的三元体系。作为主流的硬质防护涂层之一,TM-Si-N涂层受到表面工程研究者的青睐,部分涂层样品已经应用在实际生产中。我国青岛化工学院李世值教授首次用化学气相沉积(CVD)方法制备Ti-Si-N涂层,发现Si掺杂可以使TiN涂层的硬度从26 GPa提高到62 GPa[1]。随后,研究者们在其他过渡金属氮化物体系中也发现了Si掺杂的超硬效应。除超硬效应外,Si掺杂还能大幅度提高涂层的热稳定、高温抗氧化、耐磨损等性能。微观结构研究表明,Si掺杂能减少涂层的晶粒尺寸,降低涂层的表面粗糙度,呈现出细晶效应;并且,在合适的热力学和动力学条件下,TM-Si-N三元体系能够形成SiNx非晶包裹TM-N纳米晶的纳米复合结构[2-4]

TM-Si-N涂层的硬度与涂层微观结构紧密相关。随着Si含量增加,涂层由典型的柱状晶结构逐渐演变为致密的纳米复合结构,硬度提高60%[5]。随着Si含量进一步增加(通常原子数分数<10%),硬度出现极大值;但如继续增加Si含量,硬度值则会缓慢回落[6-8]。相比较而言,热稳定性和抗高温氧化性则需要Si含量较高。在1 100 K高温下,ZrN的氧化反应常数接近50,而含10% Si的ZrSiN涂层的氧化反应常数却仅有0.3,反应常数降低了两个数量级[9]。Cr-Si-N涂层表现出良好的耐蚀和耐磨性能。在人造海水中(3.5% NaCl),Cr-Si-N涂层腐蚀电位为−150 mV,比316 L的腐蚀电位−270 mV高120 mV。同时,在海水中的磨损率也降低一个量级[10]。随着Si含量的增加,磨道上易形成包含Si(OH)2润滑相的钝化层,能够降低摩擦因数,并能起一定隔离腐蚀媒质的作用。综合VN润滑性和非晶包裹纳米晶复合结构的优势,课题组在前期工作中开发了V-Si-N耐磨涂层。与M2高速钢相比,V-Si-N涂层的硬度提高2倍,摩擦因数降低了70%、磨损率降低了2~3个数量级[11]。Si掺杂形成的纳米复合结构能提高晶界强度,抑制柱状晶结构的晶间开裂;摩擦化学反应产生氧化物则能降低摩擦因数[12]。结合成分和结构的优势,获得了涂层耐磨损能力的大幅度提高。

与VN相似,W2N的氧化物(WO3)具有自润滑特性。基于前期涂层设计思路,文中将重点考察WSiN涂层的摩擦磨损行为,评估该涂层体系的润滑耐磨能力。目前,WSiN涂层体系研究相对较少,主要包括WSiN涂层的热稳定性[13]、抗高温摩擦性能[14]、抗腐蚀性能[15]以及微振行为[16]等。采用反应磁控溅射技术制备WSiN涂层,在表征涂层的结构和力学性能基础上,较系统地研究该涂层的摩擦磨损行为。

1 材料与方法 1.1 样品制备

采用双靶反应磁控溅射系统(MS 450)制备WSiN涂层,系统布局示意图可参见文献[5]。左靶为Si靶,右靶为W靶(直径100 mm,纯度99.95%),驱动电源为中频电源(AE Pinnacle Plus+5/5),具体参数见表1。试验采用3种不同基底:(100)硅片、石英和304不锈钢(SS304)。保持其它沉积参数不变,通过调节Si靶电源电压,获得W2N和WSiN涂层。

表 1 WSiN和W2N涂层的沉积条件 Table 1 Deposition conditions of the WSiN and the W2N coatings
Parameters W2N WSiN
Si targe power (MF) 0 300 V
0 100 kHz
0 0% duty
W target power (MF) 400 W, 100 kHz, 20% duty
Auxiliary magnetron (RF) / W 300
Substrate bias voltage (DC) / V –30
Deposition temperature / K 773
Substrate holder rotation/(r·min–1) 12
Base pressure / Pa 3.7×10–5
Prcoess pressure/ Pa 1.0
N2 partial pressure/ Pa 0.3
N2/Ar gas flow rate / (mL·min–1) 24/32
1.2 涂层表征

利用X射线衍射(XRD,Bruker D8 Advance),场发射扫描电镜(SEM,Hitachi S4800)和原子力显微镜(AFM,AIST-NT SmartSPMTM)对涂层进行结构形貌表征。利用Axis ULTRA DLD XPS检测涂层的成分,光源为单色Al Kα,工作气压低于6.7×10−7 Pa。试验前用2 keV Ar+刻蚀涂层表面5 min。利用C1s=284.8 eV进行标定,分析过程用Shirley背底,及适当的Gaussian/Lorentzian比例。采用MTS NANO G200纳米压痕仪测量涂层的力学参数,其中压头为Berkovich金刚石,压入深度设为膜厚的10% (300 nm)。根据Oliver-Pharr方法分析加载-卸载曲线,获得涂层的硬度和杨氏模量值。

利用Rtec摩擦磨损试验机对涂层进行室温摩擦磨损试验。对偶球是直径均为6 mm的Al2O3球和GCr15轴承钢球。加载力为5 N,滑行模式为往复模式,滑行频率为2 Hz,滑行时间为120 min。摩擦磨损试验后,采用KLA-Tencor Alpha-step IQ表面轮廓仪测量磨道的截面轮廓,再根据截面面积计算获得磨损率。每次摩擦磨损试验均重复3次,再计算平均摩擦因数和平均磨损率。且采用SEM观察磨道形貌。

2 结果与讨论 2.1 成分与结构

图1(a)~(c)分别为WSiN涂层的W 4f、Si 2p和N 1s的XPS图谱。XPS测试结果显示WSiN涂层中的Si含量(原子数分数,下同)为2.4 %。如图1(a)所示,W 4f结合能有3个峰:两个峰位于31.3 eV和33.5 eV,分别对应W—N的W 4f7/2和4f5/2;第三个峰位于37.1 eV,对应W−O键,这可能因为涂层长期暴露在大气环境中其表/亚面被氧化所致。如Vomiero[17]发现,沉积态和退火后的WSiN涂层,暴露在大气环境中,W被氧化而形成W−O键。图1(b)的Si 2p图谱中,在101.8 eV处观察到一个较微弱的峰,和文献[18]报道的含8.8 % Si的Ti-Mo-Si-N涂层一致,101.8 eV与Si3N4中Si−N键对应。可认为文中101.8 eV对应的化学键是Si−N键。由此,可以推测在WSiN涂层中形成了低含量的Si3N4相。图1(c)显示N 1s结合能有两个峰(397.2 eV和397.9 eV),分别对应W2N的W−N键和Si3N4的Si−N键,这与Zhao[15]和Ju[14]报道的结论相似。前者发现WSiN涂层的N 1s图谱中,396.9 eV与W−N键对应;后者发现397.2 eV与W−N键对应,而397.6 eV与Si3N4中Si−N对应。由此,推测该WSiN涂层主要包含W−N键、Si−N键。

图 1 WSiN涂层中不同元素的XPS图谱 Fig. 1 XPS spectra of different elements in the WSiN coating

图2为W2N和WSiN涂层的XRD衍射图谱。两种涂层显示出几乎相同的图谱,主要衍射峰位于37.2°、42.9°和62.6°,分别对应为W2N的(111)、(200)和(220)。其中,(200)衍射峰强度最大,说明两种涂层均以(200)取向为主。立方相(200)面是表面能最低且最致密的晶面,当沉积粒子扩散充分,接近热力学平衡时才能获得(002)面[19]。由此可见少量Si (2.4%) 掺杂并没有引起W2N涂层相结构的明显改变。已报道的研究表明,一定含量的Si掺杂能够减少晶粒尺寸,呈现出细晶效应。Chang[20]发现未掺杂的TiN涂层晶粒尺寸为44 nm,掺杂6.4% Si后涂层的晶粒尺寸减小到14 nm。Sheng[21]发现,Si含量从3.3%增加到6.0%,晶粒尺寸减小50%。

图 2 W2N和WSiN涂层的XRD图谱 Fig. 2 XRD patterns of the W2N coating and the WSiN coating

图3为W2N和WSiN涂层的截面形貌(SEM图)和表面形貌(AFM图)。如图3(a)所示,W2N涂层为致密的柱状生长结构:柱状晶紧密堆积,沿着生长方向延伸。如图3(b)所示,WSiN涂层也为致密的柱状晶结构,但晶柱尺寸较均匀、晶柱边界略显模糊。从涂层表面形貌来看,W2N涂层(如图3(c)所示)的表面粗糙度Ra≈8.13 nm;WSiN涂层(如图3(d)所示)的表面粗糙度Ra≈6.60 nm,比W2N的Ra降低约20%。根据AFM测试结果,进一步绘制了两种涂层的高度-高度相关函数(HHCF)曲线,并列出3参数值(如图4表2所示),其中σ为表面宽度、ξ为横向相关长度、α为分形维数[22-24]σ常用来描述表面的粗糙程度和表面高度的标准偏差,ξ表示超过表面高度部分的晶柱宽度,α表示表面织构的不规则程度[25-26]。比较这两种涂层的3个参数值,σξ分别降低了10%、25%,α增加了25%。这说明2.4%Si掺杂能降低W2N涂层的表面粗糙度,使表面更加光滑,这种现象也曾被其他研究者报道[22-23, 27-28]。Jiang[22]发现,TiN涂层的σξα值分别是42.3 、82.5和0.89 nm。当Si含量增加到14%时,σξ分别为1.1和61.3 nm,α为0.91。σξ分别降低了95%、25%,α增加了6%。Zhang[23]报道,Si成分掺杂能使TiN涂层σξα值分别由18.4 nm降低至6.7 nm(下降65%)、128.5 nm降低至55.4 nm(下降55%)、0.78增加至0.95(上升20%)。

图 3 W2N和WSiN涂层的截面和表面形貌 Fig. 3 Cross section and surface morphologies of the W2N coating and the WSiN coating
图 4 W2N和WSiN涂层的平面形貌的高度-高度相关函数 Fig. 4 Height-height correlation function derived from the surface morphology of the W2N coating and the WSiN coating
表 2 图4计算出的三参数值 Table 2 Three parameters calculated from Fig. 4
Paremeters W2N WSiN
RMS roughness, σ / mm 10.56±0.01 8.35±0.01
Correlation length, ξ / nm 102.58±2.33 76.75±1.84
Roughness exponent, α 0.78±0.04 0.97±0.06
2.2 力学性能

图5为W2N涂层和WSiN涂层的硬度和压入模量。WSiN涂层和W2N涂层的硬度均为37 GPa,2.4%Si掺杂并没有引起W2N涂层的硬度明显提高。W2N涂层的硬度比块体W2N[29]的硬度(24 GPa)高13 GPa,比Islam[30]报道的W2N涂层(16 GPa)高20 GPa,这可能与涂层的结构致密度或者残余应力等因素有关。文献报道[30]的W2N和WSiN涂层SEM图显示出晶柱之间存在明显的空隙;而文中两种涂层均表现为致密的柱状晶结构。W2N的压入模量为436 GPa,而WSiN涂层的压入模量为428 GPa。模量减少现象在高Si掺杂涂层中更加明显[31-32]。如Lin[32]对CrSiN涂层研究中发现:随着Si含量增加(6%~20%),涂层的杨氏模量从400 GPa下降到200 GPa。Si掺杂模量减少可能是因为Si与部分N形成Si−N键(键能小),减少了原来TM−N键(键能大)的密度。

图 5 W2N和WSiN涂层的硬度和压入模量 Fig. 5 Hardness and indentation modulus of the W2N coating and the WSiN coating
2.3 摩擦学性能

图6为纯SS304基片(无涂层)、W2N涂层和WSiN涂层在两种不同对偶球的摩擦磨损试验结果,包括摩擦因数随时间的变化和平均磨损率。如图6(a)所示,当对偶球为Al2O3时,不锈钢基底的平均摩擦因数为0.62。W2N涂层和WSiN涂层的摩擦因数在整个摩擦过程(7200 s)中均较稳定。W2N涂层的平均摩擦因数为0.42;WSiN涂层的摩擦因数随着滑行时间略有降低,平均摩擦因数0.35。相对于W2N涂层,WSiN涂层具有较低的摩擦因数,表现出更佳的润滑性。假设成分差异较少,涂层表面粗糙度是这两种涂层润滑性能差异的一个主要原因。AFM测试结果(图3(c)图3(d))显示WSiN涂层的Ra比W2N涂层的Ra降低了20%。同时,不锈钢基底和两种涂层的平均磨损率(如图7所示)分别为4.2×10−14、3.8×10−16和3×10−16 m3/N·m。W2N涂层和WSiN涂层的平均磨损率均比不锈钢的磨损率降低了两个数量级。Ju[14]等报道WSiN(含23.5% Si)涂层的磨损率为8.7×10−15 m3/N·m(对偶球为直径9 mm的Al2O3,载荷为3 N,滑行速度为50 r/min),比W2N涂层和WSiN涂层磨损率要高一个数量级。

图 6 不锈钢基底、W2N和WSiN涂层同Al2O3球和GCr15钢球对摩的摩擦因数 Fig. 6 Friction coefficient of 304SS substrate, W2N coating, and WSiN coating against Al2O3 counterpart and GCr15 counterpart
图 7 不锈钢基底、W2N和WSiN涂层同Al2O3球和GCr15钢球对摩的磨损率 Fig. 7 Wear rate of the 304SS substrate, the W2N coating, and the WSiN coating against Al2O3 counterpart and GCr15 counterpart

图6(b)所示,当对偶球为GCr15时,纯不锈钢的平均摩擦因数为0.56。W2N涂层在整个摩擦过程(7200 s)的摩擦曲线波动较大:0~1000 s,摩擦因数在0.4~0.6间变化;1000~7200 s,摩擦因数逐渐下降,在0.4~0.5间波动。WSiN涂层的摩擦因数波动则相对较小:0~1000 s,摩擦因数先从0.6减小到0.4,再回升到0.6;摩擦时间为1000~7200 s,摩擦因数逐渐下降,从0.6下降到0.4。W2N、WSiN涂层和GCr15对偶球的平均摩擦因数均低于不锈钢的平均摩擦因数值(0.56)。另外,不锈钢基底和两种涂层的平均磨损率(见图7)分别为5.9×10−15、2.8×10−16和3.2×10−16 m3/N·m。W2N涂层和WSiN涂层的平均磨损率均比不锈钢的磨损率降低了一个数量级。上述数据显示W2N和WSiN涂层均具有减摩耐磨性。

图8为W2N涂层和WSiN涂层分别与GCr15对偶球和Al2O3对偶球摩擦后的磨道截面轮廓、磨损区域形貌以及典型磨损产物形貌。

比较4组摩擦实验结果,可以发现在同一种对偶球下两种涂层有类似的磨损表面。当对偶球为GCr15时,如截面轮廓图8(a)8(b)所示,两种涂层磨道的截面轮廓都是细长的“V”型凹槽。磨道整体宽而光滑(图8(c)图8(f)),中间有局部的碎裂,同时出现细小的犁沟(图8(d)图8(g)),并且在磨道两旁有大量磨屑堆积(图8(e)图8(h)),代表着磨粒磨损机制。由于GCr15对偶球硬度远小于W2N和WSiN涂层硬度,摩擦过程中GCr15球磨损严重,随着磨损周期增加,摩擦接触面积越来越大,磨痕表面变宽(图8(c)图8(f)[33]。磨屑(图8(e)图8(h))主要由GCr15球产生,同时磨屑被填充到细小的犁沟中[34]。W2N和WSiN涂层磨道中部均出现一条犁沟(图8(a)图8(b)),这可能是摩擦初期GCr15对偶球与涂层的接触面较小,载荷相对集中而产生的裂纹。

当对偶球为Al2O3时,如截面轮廓图9(a)图9(b)所示,两种磨道截面轮廓都是较宽的“类U”型凹槽,凹槽顶部两侧凸起,凹槽内部两侧比较光滑,底部有轻微凸起现象。Benkahoul[35]观察到塑性变形的CrN涂层有类似现象。如图9(c)图9(f)所示,磨道中间整体光滑,局部出现裂纹和碎裂现象。在光滑部分(图9(d)图9(g))可以观察到平行于滑行方向的犁沟,这可能是Al2O3对偶球硬度较大,形成“三体”磨粒磨损。磨道两边均匀地分散着大量细小的白色磨屑颗粒(图9(e)图9(h)),这可能是摩擦化学反应形成的氧化物,代表着层层剥离的微量磨损机制[36]。同时,在某些区域观察到裂纹和脱落等局部失效现象。Fallqvist[37]等和Pan[38]等都观察到局部失效点往往优先发生在颗粒等区域,颗粒下方存在明显的空隙,并且颗粒-涂层界面处存在裂纹。Ahn[39]等证明了“颗粒”下方的空隙边界区会弱化膜基结合力,这可能是涂层在摩擦过程中出现局部碎裂剥落的原因之一。总体来说,W2N涂层和WSiN涂层以层层剥离的微量磨损为主;裂纹和脱落等现象仅仅局限在某些区域,并没有对两种涂层造成致命性破坏。

图 9 Al2O3对摩试验后磨道的轮廓和平面形貌SEM图 Fig. 9 Profiles and SEM images of the wear tracks on the W2N and the WSiN coatings after the tribo-tests against Al2O3 counterpart
图 8 W2N和WSiN涂层和GCr15对摩试验后磨道的轮廓和平面形貌SEM图 Fig. 8 Profiles and SEM images of the wear tracks on the W2N and the WSiN coatings after the tribo-tests against GCr15 counterpart and Al2O3 counterpart

上述Al2O3和GCr15两种对偶球的摩擦磨损结果均显示,在不锈钢基底上沉积W2N和WSiN涂层都可以起到润滑耐磨作用。W2N和WSiN涂层的磨损率低于不锈钢磨损率两个数量级。尤其是WSiN涂层表现出较好的润滑性,与Al2O3、GCr15对偶球的摩擦因数分别为0.35和0.49,均小于前期工作中其它硬质涂层的摩擦因数。例如,在基本相近的摩擦磨损试验参数下,VN涂层、CrN涂层、VB2涂层与Al2O3对偶球的摩擦因数分别是0.42、0.47和0.6[36, 40]。Ju[14]报道的含2.6% Si的WSiN涂层与Al2O3对偶球的摩擦因数是0.43。同时,Ju已经报道过WSiN涂层在高温条件下,磨损机制由氧化磨损主导,产生大量的WO3润滑相可以实现摩擦因数的大幅度降低。WSiN涂层同时兼备润滑性和耐磨性,可以弥补硬质涂层往往摩擦因数较高的缺点,能够应用在某些实际生产中。

研究表明,少量Si掺杂能引起TM-N涂层结构性能的改变。Xu[41]报道VN涂层掺杂1.3% Si成分,涂层的柱状晶生长结构宽化,由75 nm(VN)变为140 nm(VSiN),同时Benkahoul[35]等人发现,CrN涂层掺杂2.3% Si成分后,CrSiN涂层的摩擦因数较CrN而言,得到明显降低33% (0.6~0.4)。前期研究发现2.3% Si成分掺杂VN涂层,发现掺杂后VSiN涂层的表面粗糙度2.2 nm,较VN涂层的粗糙度4.1 nm而言降低50%,且进一步增加Si成分,效果更明显[12]。文中2.4% Si掺杂使涂层表面粗糙度降低20%,并使柱状晶结构致密化,这可能意味着涂层的结构也发生了变化。在今后的工作中,将进一步提高Si的含量,较系统的研究Si含量对W2N涂层的结构、力学性能和摩擦磨损行为的影响。优化涂层结构和成分,并更系统研究WSiN涂层在不同工况下的摩擦磨损行为和高Si含量对涂层摩擦磨损行为的影响。

3 结 论

(1) 利用反应磁控溅射技术成功制备W2N和WSiN涂层,在W2N涂层中掺杂少量Si (2.4%)成分,没有引起W2N涂层相结构的明显变化,但使涂层表面更加光滑。WSiN涂层的表面粗糙度比W2N涂层表面粗糙度低20%。

(2) W2N和WSiN涂层均有较高的硬度37 GPa,两者的压入模量分别为436和428 GPa。

(3) 当对偶球为Al2O3时,WSiN和W2N涂层磨损率比不锈钢基底低两个数量级,平均摩擦因数分别降低了50%和30%;当对偶球为GCr15时,WSiN和W2N涂层磨损率比不锈钢基底低一个数量级,平均摩擦因数分别低12%和16%。这4个摩擦磨损过程均是以层层剥离的微量磨损为主。因此,这两种涂层具有良好的润滑耐磨性能,且WSiN涂层的性能更佳。

参考文献
[1] LI S Z, SHI Y L, PENG H R. Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition[J]. Plasma Chemistry and Plasma Processing, 1992, 12(3): 287-297.
点击浏览原文
[2] YUAN Y, QIN Z, YU D H, et al. Relationship of microstructure, mechanical properties and hardened steel cutting performance of TiSiN-based nanocomposite coated tool[J]. Journal of Manufacturing Processes, 2017, 28: 399-409.
点击浏览原文
[3] CHAWLA V, JAYAGANTHAN R, CHANDRA R. A study of structural and mechanical properties of sputter deposited nanocomposite Ti-Si-N thin films[J]. Surface & Coatings Technology, 2010, 204(9-10): 1582-1589.
[4] PILLOUD D, PIERSON J F, DE LUCAS M M, et al. Study of the structural changes induced by air oxidation in Ti-Si-N hard coatings[J]. Surface & Coatings Technology, 2008, 202: 2413-2417.
点击浏览原文
[5] HUANG F, GE F F, ZHU P, et al. Superhard V-Si-N coatings (>50 GPa) with the cell-like nanostructure prepared by magnetron sputtering[J]. Surface & Coatings Technology, 2013, 232: 600-605.
点击浏览原文
[6] PARK O N, PARK J H, YOON S Y, et al. Tribological behavior of Ti-Si-N coating layers prepared by a hybrid system of arc ion plating and sputtering techniques[J]. Surface & Coatings Technology, 2004, 179: 83-88.
点击浏览原文
[7] KANG M C, KIM J S, KIM K H. Cutting performance using high reliable device of Ti-Si-N-coated cutting tool for high-speed interrupted machining[J]. Surface & Coatings Technology, 2005, 200: 1939-1944.
点击浏览原文
[8] SANDU C S, BENKAHOUL M, SANJINES R, et al. Model for the evolution of Nb-Si-N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties[J]. Surface & Coatings Technology, 2006, 201(6): 2897-2903.
[9] NOSE M, ZHOU M, NAGAE T, et al. Properties of Zr-Si-N coatings prepared by RF reactive sputtering[J]. Surface & Coatings Technology, 2000, 132(2-3): 163-168.
点击浏览原文
[10] LEI S, ZHANG Y, WANG Y, et al. Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 175-184.
点击浏览原文
[11] GE F F, ZHU P, WANG H, et al. Friction and wear behavior of magnetron co-sputtered V-Si-N coatings[J]. Wear, 2014, 315(1-2): 17-24.
点击浏览原文
[12] GE F F, ZHU P, MENG F, et al. Enhancing the wear resistance of magnetron sputtered VN coating by Si addition[J]. Wear, 2016, 354: 32-40.
点击浏览原文
[13] MARIAZZI S, MACCHI C, MARCHI E B, et al. Characterization of sputtered W-Si-N thin films by a monoenergetic positron beam[J]. Radiation Physics and Chemistry, 2007, 76(2): 209-212.
点击浏览原文
[14] JU H, HE X, YU L, et al. The microstructure and tribological properties at elevated temperatures of tungsten silicon nitride films[J]. Surface & Coatings Technology, 2017, 326: 255-263.
[15] ZHAO H, YE F. Effect of Si-incorporation on the structure, mechanical, tribological and corrosion properties of WSiN coatings[J]. Applied Surface Science, 2015, 356: 958-966.
点击浏览原文
[16] GASPAR M C, RAMALHO A, CAVALEIRO A. Effect of the counterface material on the fretting behaviour of sputtered W-Si-N coatings[J]. Wear, 2003, 255(1-6): 276-286.
点击浏览原文
[17] VOMIERO A, BOSCOLO MARCHI E, QUARANTA A, et al. Structural properties of reactively sputtered W-Si-N thin films[J]. Journal of Applied Physics, 2007, 102(3): 1-9.
[18] XU J, JU H, YU L. Influence of silicon content on the microstructure, mechanical and tribological properties of magnetron sputtered Ti-Mo-Si-N films[J]. Vacuum, 2014, 110: 47-53.
点击浏览原文
[19] GALL D. Nanostructured transition-metal nitride layers[J]. Engineering Thin Films and Nanostructures with Ion Beams, 2005: 431.
[20] CHANG C L, LEE J W, TSENG M D. Microstructure, corrosion and tribological behaviors of TiAlSiN coatings deposited by cathodic arc plasma deposition[J]. Thin Solid Films, 2009, 517(17): 5231-5236.
点击浏览原文
[21] YANG S M, CHANG Y Y, WANG D Y, et al. Mechanical properties of nano-structured Ti-Si-N films synthesized by cathodic arc evaporation[J]. Journal of Alloys and Compounds, 2007, 440(1-2): 375-379.
点击浏览原文
[22] JIANG N, SHEN Y G, MAI Y W, et al. Nanocomposite Ti-Si-N films deposited by reactive unbalanced magnetron sputtering at room temperature[J]. Materials Science and Engineering: B, 2004, 106(2): 163-171.
点击浏览原文
[23] ZHANG C H, LIU Z J, LI K Y, et al. Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition[J]. Journal of applied physics, 2004, 95(3): 1460-1467.
点击浏览原文
[24] ZHANG S, SUN D, FU Y, et al. Effect of sputtering target power density on topography and residual stress during growth of nanocomposite nc-TiN/a-SiNx thin films[J]. Diamond and related materials, 2004, 13(10): 1777-1784.
点击浏览原文
[25] KOLANEK K, TALLARIDA M, MICHLING M, et al. In situ study of the atomic layer deposition of HfO2 on Si[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, 30(1): 01A143.
点击浏览原文
[26] GREDIG T, SILVERSTEIN E A, BYRNE M P. Height-height correlation function to determine grain size in iron phthalocyanine thin films[C]. Journal of Physics: Conference Series. IOP Publishing, 2013, 417(1): 012069.
[27] KIM K H, CHOI S, YOON S. Superhard Ti-Si-N coatings by a hybrid system of arc ion plating and sputtering techniques[J]. Surface & Coatings Technology, 2002, 161(2-3): 243-248.
点击浏览原文
[28] LI Z, MIYAKE S, KUMAGAI M, et al. Structure and properties of Ti-Si-N films deposited by dc magnetron cosputtering on positively biased substrates[J]. Japanese Journal of Applied Physics, 2003, 42(12R): 7510.
[29] MA Y, CUI Q, SHEN L, et al. X-ray diffraction study of nanocrystalline tungsten nitride and tungsten to 31 GPa[J]. Journal of Applied Physics, 2007, 102(1): 013525.
点击浏览原文
[30] ISLAM A, ANWAR S, ANWAR S. Development of nc-W2N/a-Si3N4 hard coating[C]//AIP Conference Proceedings. AIP Publishing, 2017, 1832(1): 080005.
[31] CAMPS I, MUHL S, CAMPS E, et al. Tribological properties of TiSiN thin films deposited by laser ablation[J]. Surface & Coatings Technology, 2014, 255: 74-78.
点击浏览原文
[32] LIN J, WANG B, OU Y, et al. Structure and properties of CrSiN nanocomposite coatings deposited by hybrid modulated pulsed power and pulsed dc magnetron sputtering[J]. Surface & Coatings Technology, 2013, 216: 251-258.
点击浏览原文
[33] 王海新, 耿中荣, 张广安. CrSiN纳米复合薄膜的摩擦学性能[J]. 中国表面工程, 2013, 26(5): 24-30
WANG H X, GENG Z R, ZHANG G A, et al. Tribological properties of CrSiN nanocomposite films[J]. China Surface Engineering, 2013, 26(5): 24-30 (in Chinese)
点击浏览原文
[34] 林乃明, 谢瑞珍, 郭俊文, 等. 表面织构-离子氮化复合处理改善316不锈钢的摩擦学性能[J]. 中国表面工程, 2016, 29(2): 58-68
LIN N M, XIE R Z, GUO J W, et al. Improvement in tribological property of 316 stainless steel via surface texturing-plasma nitriding duplex treatment[J]. China Surface Engineering, 2016, 29(2): 58-68 (in Chinese)
点击浏览原文
[35] BENKAHOUL M, ROBIN P, MARTINU L, et al. Tribological properties of duplex Cr-Si-N coatings on SS410 steel[J]. Surface & Coatings Technology, 2009, 203(8): 934-940.
点击浏览原文
[36] GE F F, ZHU P, MENG F P, et al. Achieving very low wear rates in binary transition-metal nitrides: The case of magnetron sputtered dense and highly oriented VN coatings[J]. Surface & Coatings Technology, 2014, 248: 81-90.
点击浏览原文
[37] FALLQVIST M, OLSSON M. The influence of surface defects on the mechanical and tribological properties of VN-based arc-evaporated coatings[J]. Wear, 2013, 297(1-2): 1111-1119.
点击浏览原文
[38] PANJAN P, GSELMAN P, KEK-MERL D, et al. Growth defect density in PVD hard coatings prepared by different deposition techniques[J]. Surface & Coatings Technology, 2013, 237: 349-356.
点击浏览原文
[39] AHN S H, LEE J H, KIM J G, et al. Localized corrosion mechanisms of the multilayered coatings related to growth defects[J]. Surface & Coatings Technology, 2004, 177: 638-644.
点击浏览原文
[40] GE F F, CHEN C, SHU R, et al. Hard and wear resistant VB2 coatings deposited by pulsed DC magnetron sputtering [J]. Vacuum, 2017, 135: 66-72.
点击浏览原文
[41] XU J, CHEN J, YU L. Influence of Si content on the microstructure and mechanical properties of VSiN films deposited by reactive magnetron sputtering[J]. Vacuum, 2016, 131: 51-57.
点击浏览原文
http://dx.doi.org/10.11933/j.issn.1007-9289.20180503005
中国科协主管,中国机械工程学会主办。
0

文章信息

李科, 邵涛, 葛芳芳, 黄峰, 冯庆
LI Ke, SHAO Tao, GE Fangfang, HUANG Feng, FENG Qing
低Si含量WSiN涂层的结构和摩擦学行为
Structure and Tribological Behavior of WSiN Coatings with Low Content of Si
中国表面工程, 2018, 31(5): 108-117.
China Surface Engineering, 2018, 31(5): 108-117.
http://dx.doi.org/10.11933/j.issn.1007-9289.20180503005

文章历史

收稿日期: 2018-05-03
修回日期: 2018-08-10
网络出版日期: 2018-09-18

工作空间