关键词 搜索    
硅烷-钼复合无铬钝化膜的耐蚀性及标准曲线构建
程琪1, 许哲峰1, 于晓华1,2, 付天琳1, 刘成1, 刘建雄1, 詹肇麟1     
1. 昆明理工大学 材料科学与工程学院,昆明 650093;
2. 昆明理工大学 固体废弃物资源化国家工程研究中心,昆明 650031
摘要: 为更好地指导新型硅烷-钼复合无铬钝化膜的工业化生产,研究钝化膜的耐蚀性能,构建皮膜量标准曲线。分别使用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)分析钝化膜的物相组成和表面元素价态。利用中性盐雾试验和电化学测试,探讨钝化膜的耐蚀性能。采用X射线荧光光谱法(XRF),绘制和构建皮膜量标准曲线。结果表明:硅烷-钼复合无铬钝化膜层中Si、Mo元素能分别与Zn形成化学键,膜层结合性较好。膜层耐蚀性在一定范围内随着膜层皮膜量升高而升高,当皮膜量高于800 mg/m2时,耐蚀性趋于稳定,其耐蚀性与稳定性接近Cr6+。此外,皮膜量与XRF射线强度呈线性关系,斜率为3.413。
关键词: 硅烷-钼复合     钝化膜     耐蚀性     标准曲线    
Corrosion Resistance and Standard Curve of Silane-Molybdenum Composite Chromium-free Passivation Film
CHENG Qi1, XU Zhe-feng1, YU Xiao-hua1,2, FU Tian-lin1, LIU Cheng1, LIU Jian-xiong1, ZHAN Zhao-lin1     
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2. National Engineering Research Center for Solid Waste Resources, Kunming University of Science and Technology, Kunming 650031
Fund: Supported by National High Technology Research and Development Program of China (863 Program)(2009AA03Z529)
Abstract: In order to better guide the industrial production of the new silane-molybdenum composite chromium-free passivation film, the corrosion resistance of the passivation film was studied, and the standard curve of the coating volume was constructed. X-Ray diffractometer (XRD) and X-ray photoelectron spectrometer (XPS) were used to analyze the phase composition and surface valence states of the passive film. Corrosion resistance of the passive film was investigated by neutral salt spray test and electrochemical test. The standard curve of the film’s weight was constructed by X-Ray fluorescence spectrometry (XRF). The results show that the Si and Mo in the molybdenum chromium composite passivation film form chemical bonds with Zn, respectively; and the film has good adhesion. In a certain range, the corrosion resistance of the film increases with the increase of the film’s weight. When the film’s weight is more than 800 mg/m2, the corrosion resistance of the coatings tends to be stable, and its corrosion resistance and stability are close to Cr6+. Additionally, the weight of the film is linear with the XRF ray intensity, and the slope is 3.413.
Key words: silane-molybdenum complexes     passivation film     corrosion resistance     standard curve    
0 引 言

镀锌钢板广泛应用于汽车制造、家电家具、建筑业等领域[1-2]。热镀锌层不仅能形成致密的保护层,而且还具有牺牲阳极保护阴极的效果,当镀锌层破损时,仍能通过腐蚀锌层来保护铁质母材不被侵蚀[3]。但是锌层在潮湿的空气中容易腐蚀,形成白色的、疏松的腐蚀产物[4],既影响镀层外观,又影响钢板的使用寿命。为更好地防止镀锌钢板被腐蚀,通常对镀锌板进行钝化处理[5-6]

传统的钝化方式主要是铬酸盐钝化,但是铬酸盐有剧毒[7-8],在使用上受到很大的限制,因此迫切需要铬酸盐钝化的替代技术。因钼是铬的同族元素,所以钼酸盐钝化技术受到了广泛关注[9-11]。国内外学者经过大量研究发现钼酸盐钝化可有效提高镀锌板的耐蚀性能,且耐蚀性与钼酸盐含量成正比,但是钼酸盐钝化仍逊色于铬酸盐钝化,不具有自我修复效果,而且价格较贵[12-14]。硅烷偶联剂钝化因工艺简单、耐蚀性好,也是铬酸盐钝化替代技术的重点之一[15-16],但单一的硅烷钝化膜较薄,在恶劣的环境条件下无法长期有效的保护金属基体[17-19]。许哲峰等[20]通过电化学测试研究了固化温度对耐蚀性能的影响,认为固化温度在100 ℃时钝化膜耐蚀性能最好。Min等[21]研究了不经过热处理直接浸入硅酸钾溶液中形成100 nm的疏水硅酸盐涂层从而提高了膜层的耐蚀性。钼酸盐与硅烷复合钝化则可以有效的弥补彼此的不足,解决钼酸盐钝化技术成本高昂、不能自我修复的缺陷,同时也可以弥补单一硅烷偶联剂钝化耐蚀性不足的问题。因此硅烷偶联剂与钼酸盐复合钝化工艺具有较大的研究价值。

钝化膜层的耐蚀性能主要受到钝化膜成分和厚度的影响,但是当前大部分学者主要关注于研究新型的钝化膜成分和性能,即研究新型的钝化液配方,而膜层厚度对热镀锌板钝化膜耐蚀性影响的相关研究则少见报道。但是在实际应用中,钝化膜厚度对耐蚀性有着明显影响,对膜层厚度的研究,不仅能从理论上进一步完善钝化膜耐蚀性相关研究,更可以有效的指导工业生产,创造显著的实际价值。基于此,文中在研究一种新型的硅烷-钼复合无铬钝化膜耐蚀性的基础上,着重研究膜层厚度对耐蚀性的影响,同时构建了皮膜量的标准曲线,期望能够更好地指导钝化膜工业化生产,为企业和社会带来更多的经济价值。

1 试验与方法 1.1 样品制备

试验用热镀锌基板为攀钢冷轧厂生产的冲压用无锌花热镀锌钢板,牌号为:DX52D+Z和DX53D+Z,剪切成600 mm×100 mm的样板。钝化液配方采用星点设计响应面法优化得到,主要成分为(w/%):复合硅烷偶联剂3.88%,钼酸铵1.55%,纳米硅溶胶3.53%,单宁酸3.15%,水性苯丙乳液固体份干重比为3.4%和水性聚乙烯蜡0.15%。以辊涂方式将硅烷-钼无铬钝化液涂覆在镀锌板表面(通过调整取料辊和涂敷辊之间的间隙与周速比等工艺参数,可有效的控制辊涂的涂膜厚度)。用梯度烤箱对钝化层进行烘干固化,烘干温度为100 ℃,时间为60 s,固化后放置24 h,得到钝化膜层试样,用于后续钝化膜层相关性能测试。

1.2 表征与分析

用D/MAX-1400型X射线衍射仪分析膜层表面相组成;用AXIS-ULTRA DLD型X射线光电子能谱仪分析表面元素的组成;采用YWX/Q-020型盐雾腐蚀试验箱进行中性盐雾试验。样品为150 mm×75 mm×3 mm,用透明胶带封边,封边尺寸为5 mm,试验面与垂直方向呈15°~30°,以50 g/L NaCl去离子水溶液喷雾。以24 h为一周期,每周期结束开箱检查试样,检查时间不超过3 min。

利用PARSTAT 2273型电化学测试系统进行腐蚀性能测试,电极采用三电极体系,参比电极采用803型饱和甘汞电极(SCE),99.99%的铂电极为辅助电极,工作电极面积为1 cm2,测试条件为室温开放体系,电解液为未除氧蒸馏水配制的3.5%NaCl(分析纯)溶液,分别测试工业Cr6+钝化镀锌板和硅烷-钼无铬钝化镀锌板的电化学性能。

使用BK KHC型线棒涂布器均匀涂布,然后采用BYK PT-2601型梯度烤箱进行烘干固化。将试样剪切成Ф3.3 mm的圆形试样或直接剪成3.0 mm×3.0 mm的正方形试样。将每个皮膜量标准值试样制作成50个上述测试试样,然后使用X射线荧光光谱法(XRF)测试其射线强度,并通过计算机对皮膜量理论计算标准值与所测的Si元素射线强度值进行线性拟合筛选,选择误差较小、线性回归较理想的一组试样确定为标准样,然后通过XRF进行标样数据采集,并运用ZSX PrimusⅡ型荧光光谱仪程序进行迭代计算,通过涂层元素标准含量分析涂层元素含量,采用经验影响系数法(经验α系数),即使用一定的数学模式,一组二元或多元标样及测得的相应强度,采用Matlab软件,通过作图和回归计算,求得经验影响系数。

2 试验结果与讨论 2.1 钝化膜表面分析

硅烷-钼涂层的物相结构如图1所示。其中主峰代表了镀锌层,其余的小峰是MoO2、MnO3、ZnMoO4和SiO2等;MoO2、Mo2O3、MoO(OH)2和ZnMoO4证明了在钝化膜中可能存在Mo4+和Mo6+;MoO(OH)2也证明了O−H键的存在。

图 1 硅烷-钼无铬钝化膜的XRD图谱 Figure 1 XRD patterns of silane-molybdenum chromium-free passivation film

采用XPS光电子能谱对硅烷-钼无铬钝化膜的表面进行全元素扫描,结果如图2所示。可以看出钝化膜所含有的主要元素为Zn、Mo、Si、O。

图 2 硅烷-钼无铬钝化膜的全元素扫描谱及深度剖析结果 Figure 2 Full element scanning spectrum and depth profiling results of the silane-molybdenum chromium-free passivation film

采用XPS对硅烷-钼无铬钝化膜中的Mo、O、Zn和Si元素进行窄幅分峰拟合处理,结果如图3所示。图3(a)是钝化膜Mo元素的分峰拟合图,在Mo元素的窄谱图中,由两对重叠峰组成,其中EMo 3d1/2=233.9 eV的峰代表Mo3+EMo 3d1/2=232.6 eV的峰代表Mo6+图3(b)是钝化膜中O元素的分峰拟合图,O元素由两个重叠峰组成,其中EO 1s=532.21 eV代表OHEO 1s=530.76 eV的代表O2−图3(c)是钝化膜中Si元素的分峰拟合图,其中ESi 2p=103.2 eV代表Si−O−Si键,ESi 2p=102.4 eV代表C−Si键,ESi 2p=100.7 eV代表Si−O−Zn键。图3(d)是膜层中Zn元素的窄幅扫描图谱,膜层中Zn元素主要以Zn2+形式存在。

图 3 硅烷-钼无铬膜的窄幅扫描谱 Figure 3 Narrow spectra of silane-molybdenum chromium-free passivation film

结合钝化膜表面Mo、O、Si和Zn元素的价态,可以判断出硅烷-钼无铬钝化膜层的组成应是:Mo2O3、Mo(OH)3、MoO3、Zn(OH)2、ZnMoO4、ZnMo2O4·H2O、Si−O−Si、C−Si和Si−O−Zn。钝化过程中钼在热镀锌表面的吸附作用使MoO42−存在于钝化膜中,而MoO42−的存在阻挡了氯离子等侵蚀性阴离子的破坏作用,使钝化膜层具有了阳离子选择性。因此,钝化膜表面少量的MoO42−对提高镀锌钝化膜的耐蚀性具有重要意义。

2.2 中性盐雾试验分析

图4为部分表面处理钝化膜层72 h中性盐雾试验结果。图5为不同皮膜量试样与耐蚀性能关系的散点图。由图5可知:硅烷-钼无铬热镀镀锌板表面皮膜量低于700 mg/m2时,腐蚀面积超过30%以上,耐蚀性能较差;当热镀锌板表面硅烷-钼膜层皮膜量达到780 mg/m2时,耐蚀性能明显提高,腐蚀面积只有2%~3%左右,达到家电用户使用要求(GB 6458−86);皮膜量控制在800 mg/m2以上时,耐蚀性与工业用Cr6+钝化膜相当;随着热镀锌板表面硅烷-钼皮膜量的增加,耐蚀性能逐步提高,皮膜量达到900 mg/m2时以上,表面腐蚀面积为0,合格率达到100%。其原因可能是:随着钝化膜皮膜量的逐渐增加,MoO42−含量也随之增加,耐蚀性得到有效提升;当MoO42−含量达到一定程度以后,耐蚀性趋于稳定[22]

图 4 不同皮膜量硅烷-钼无铬钝化膜层与Cr6+膜层试样盐雾试验对比 Figure 4 Comparison of salt spray test with different weight of silane-molybdenum chromium-free passivation film and Cr6+ film
图 5 硅烷-钼无铬钝化膜皮膜量与腐蚀性能的关系 Figure 5 Relationship between the weight and the corrosion resistance of silane-molybdenum chromium-free film
2.3 电化学分析

图6为硅烷-钼无铬膜(皮膜量为800 mg/m2)和Cr6+钝化膜样品在3.5%NaCl溶液中的动电位极化曲线,对应参数见表1。可以看出:Cr6+钝化膜的自腐蚀电位(−0.95 V)>硅烷-钼无铬钝化膜的自腐蚀电位(−1.09 V);Cr6+钝化膜的自腐蚀电流密度(7.94×10−6 A/cm2)<硅烷-钼无铬膜的腐蚀电流密度(1.25×10−5 A/cm2),由此可知硅烷-钼无铬膜层耐腐蚀性稍低于Cr6+钝化膜。

图 6 硅烷-钼无铬钝化膜和Cr6+钝化膜的动电位极化曲线 Figure 6 Potentiodynamic polarization curves of silane-molybdenum chromium-free passivation film and Cr6+ film
表 1 硅烷-钼无铬钝化膜和Cr6+钝化膜的自腐蚀电位和自腐蚀电流密度 Table 1 Self corrosion potential and corrosion current density of silane-molybdenum chromium-free passivation film and Cr6+ film
Sample Ecorr / V Icorr / (10−6A·cm−2) Rcorr / Ω
Cr6+ −0.95 7.94 5 352
Silane-molybdenum −1.09 12.5 4 597

图7为两个样品的Nyquist图,从图中可以看出,Nyquist是一个不完整的容抗弧。这种特征是由钝化膜表面是一个致密的内层和一个多孔的外层构成导致的。容抗弧和发生在钝化膜/溶液界面处的电荷转移过程有关[21]。其中,容抗弧半径的大小反应出了钝化膜的稳定性大小[22-24]。容抗弧越大,钝化膜在腐蚀介质中越稳定[25-26]。从Nyquist图中可以看出,硅烷-钼无铬钝化膜在腐蚀介质中的稳定性接近Cr6+钝化膜[27-28]

图 7 硅烷-钼无铬钝化膜和Cr6+钝化膜的Nyquist图 Figure 7 Nyquist of silane-molybdenum chromium-free passivation film and Cr6+ film
2.4 膜层的标准曲线

准确测定膜层皮膜量是决定钝化液能否实现工业连续生产的关键。标准曲线能够较好的体现镀锌板膜层重量与耐蚀性能的关系,确定热镀锌板单位面积上的皮膜量是非常有必要的。由于钝化膜层一般厚度在0.6~1.5 μm范围内,由X射线荧光光谱法可以较为准确测出文中开发的硅烷-钼无铬膜层皮膜量。经过精确计算各种Si含量的硅烷-钼无铬钝化膜层试样,绘制硅烷-钼无铬钝化膜层标准曲线。绘制过程具体如下:由于硅烷-钼无铬钝化膜层中Si元素较为稳定,同时,在XRF测试过程中,受干扰较低,故本标准曲线测试元素为Si元素,根据硅烷-钼无铬钝化液的固体份含量及Si元素含量所占比例关系,计算出单位面积上的皮膜量(硅烷-钼无铬液干膜重量),换算成硅烷-钼无铬液的重量,用移液管将计算的硅烷-钼无铬钝化液液体滴加在镀锌板表面。

实验室计算线性回归曲线的皮膜量理论计算标准值及XRF测试强度值见表2,理论计算线性回归曲线如图8(a)所示,XRF配置软件迭代模拟回归标准曲线见图8(b)。同时,根据XRF程序绘制的硅烷-钼无铬钝化膜标准曲线再次对实验室制备的标样进行对比测试,得出的结果为皮膜量计算值见表2。从图8表2中可以看出:实验室设计的理论皮膜量标准值与对应的XRF射线强度值经计算模拟线性回归,呈现如图8(a)中所示线性回归图,线性回归精度较高,故选用该组试样为硅烷-钼无铬钝化膜皮膜量的标准曲线绘制标样;同时,由图8(b)可知标准曲线的校正因数较高,达到0.999 96,精确度较高,斜率为3.413。也说明该硅烷-钼无铬钝化膜标准曲线可信度较高。同时,使用该标准曲线再次对标准值试样进行检测,检测误差较小,见表2中所示偏差。

表 2 标准曲线测试用标样参数 Table 2 Sample parameters used for standard curve test
Sample Strength / (N·s·m−2) Standard value / (mg·m−2) Calculated value / (mg·m−2) Deviation / (mg·m−2)
ZRH-1 0.802 51 0 0.385 84 0.385 84
ZRH-2 75.602 71 250 254.610 94 4.610 94
ZRH-3 88.194 19 300 303.193 58 3.093 58
ZRH-4 113.928 54 385 387.214 51 2.214 51
ZRH-5 182.301 42 630 625.795 47 –4.204 53
ZRH-6 348.987 95 1 190 1 189.084 6 –0.915 4
ZRH-7 527.957 28 1 800 1 801.475 86 1.475 86
图 8 硅烷-钼无铬钝化膜的标准曲线 Figure 8 Standard curves of silane-molybdenum chromium-free composite passivating
3 结 论

(1) 硅烷-钼复合无铬钝化膜层中Si、Mo元素能分别与镀锌板中Zn形成化学键,膜层结合性较好。

(2) 皮膜量高于800 mg/m2时,腐蚀面积趋近于0;Cr6+钝化膜的自腐蚀电位(−0.95 V)>硅烷-钼无铬钝化膜的(−1.09 V);Cr6+钝化膜的自腐蚀电流密度(7.94×10−6A/cm2)<硅烷-钼无铬膜的(1.25×10−5 A/cm2),耐蚀性已经接近Cr6+

(3) 皮膜量标准曲线中,皮膜量与XRF射线强度呈线性关系,校正因数达0.999 96,精确度和可靠性较好,斜率为3.413。

参考文献
[1] 郝贠洪, 刘永利, 邢永明, 等. 钢结构镀锌涂层冲蚀磨损表面形貌及粗糙度[J]. 中国表面工程, 2017, 30(1): 56-62.0
HAO Y H, LIU Y L, XING Y M, et al. Erosion Wear surface morphology and roughness of steel structure galvanized coating[J]. China Surface Engineering, 2017, 30 (1): 56-62 (in Chinese).
点击浏览原文
[2] ZHANG Q F, HUANG J Z, ZHAO P, et al. Development of continuous coating and plating strip steel[J]. Journal of Iron and Steel Research (International), 2001, 8(2): 34-41.
[3] KAMBUROVA K, BOSHKOVA N, BOSHKOV N, et al. Design of polymeric core-shell nanocontainers impregnated with benzotriazole for active corrosion protection of galvanized steel[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 499: 24-30.
[4] AUTENGRUBER R, LUCKENEDER G, HASSEL A W. Corrosion of press-hardened galvanized steel[J]. Corrosion Science, 2012, 63: 12-19.
点击浏览原文
[5] TSAI C Y, LIU J S, CHEN P L, et al. A roll coating tungstate passivation treatment for hot-dip galvanized sheet steel[J]. Surface & Coatings Technology, 2011, 205(21): 5124-5129.
[6] FERREIRA J M, SOUZA K P, QUEIROZ F M, et al. Electrochemical and chemical characterization of electrodeposited zinc surface exposed to new surface treatments[J]. Surface & Coatings Technology, 2016, 294: 36-46.
[7] POMMIERS S, FRAYRET J, CASTETBON A, et al. Alternative conversion coatings to chromate for the protection of magnesium alloys[J]. Corrosion Science, 2014, 84(8): 135-146.
[8] PADILLA V, ALFANTAZI A. Corrosion film breakdown of galvanized steel in sulphate-chloride solutions[J]. Construction & Building Materials, 2014, 66(1): 447-457.
[9] WILCOX G D, WHARTON J A. A review of chromatefree passivation treatments for zinc and zinc alloys[J]. Transactions of the Institute of Metal Finishing, 1997, 75(6): B140-B142.
[10] TANG P T, BECH-NIELSEN G, MOLLER P. Molybdate based alternatives to chromating as a passivation treatment for zinc[J]. Plating & Surface Finishing, 1994, 81(11): 20-23.
[11] LI Y P, WU L, LIU M. The electrochemical behavior and microstructure of chromium-free passivation film on galvanized steel[C]//Advanced Materials Research. Trans Tech Publications, 2011, 150: 947-950.
[12] WHARTON J A, WILCOX G D, Baldwin K R. An electrochemical evaluation of possible non-chromate conversion coating treatments for electro dep o sited zinc-nickel alloys[J]. Transactions of the Institute of Metal Finishing, 1999, 77(4): 152-158.
点击浏览原文
[13] WILCOX G D, GABE D R. Passivation studies using group VIA anions: IV cathodic redox reactions and film formation[J]. British Corrosion Journal, 1984, 19(4): 196-200.
点击浏览原文
[14] BIJIMI D, GABE D R. Passivation studies using group VIA anions III anodic treatment of zinc[J]. British Corrosion Journal, 1983, 18(2): 88-92.
点击浏览原文
[15] 马建权, 田冰, 程兴德. 镀锌钢板有机无铬钝化技术研究的进展[J]. 轧钢, 2007, 24(1): 36-38.0
MA J Q, TIAN B, CHENG X D. Development of Chromate-free organic passivation for galvanizing sheet steel[J]. Steel Rolling, 2007, 24(1): 36-38 (in Chinese).
点击浏览原文
[16] 王双红, 刘常升, 单凤君, 等. 镀锌板的有机硅烷钝化技术及其研究进展[J]. 腐蚀科学与防护技术, 2008, 20(1): 35-37.0
WANG S H, LIU C S, SHAN F J, et al. Study on organosilane passivation technology of galvanized sheet and its research progress[J]. Corrosion Science and Protetion Technology, 2008, 20(1): 35-37 (in Chinese).
点击浏览原文
[17] ZHU D, OOIJ W J V. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl] amine and vinyltriacetoxysilane[J]. Progress in Organic Coatings, 2004, 49(1): 42-53.
点击浏览原文
[18] FRANQUET A, PEN C L, TERRYN H, et al. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium[J]. Electrochimica Acta, 2003, 48(9): 1545-1255.
[19] SHI H, LIU F, HAN E H. Corrosion protection of AZ91D magnesium alloy with sol-gel coating containing 2-methyl piperidine[J]. Progress in Organic Coatings, 2009, 66(3): 183-191.
点击浏览原文
[20] 许哲峰, 荣菊, 于晓华, 等. 固化温度对热镀锌板钝化膜耐腐蚀性能影响[J]. 哈尔滨工程大学学报, 2016, 37(12): 1743-1747.0
XU Z F, RONG J, YU X H, et al. Effects of curing temperature on corrosion resistance of passivation film of hot-dip galvanized sheet[J]. Journal of Harbin Engineering University, 2016, 37(12): 1743-1747 (in Chinese).
点击浏览原文
[21] MIN J, JI H P, SOHN H K, et al. Synergistic effect of potassium metal siliconate on silicate conversion coating for corrosion protection of galvanized steel[J]. Journal of Industrial & Engineering Chemistry, 2012, 18(2): 655-660.
[22] DALBIN S, MAURIN G, NOGUEIRA R P, et al. Silica-based coating for corrosion protection of electrogalvanized steel[J]. Surface & Coatings Technology, 2005, 194(2/3): 363-371.
[23] MICHAILIDIS N, STERGIOUDI F, MALIARIS G, et al. Influence of galvanization on the corrosion fatigue perf ormance of high-strength steel[J]. Surface & Coatings Technology, 2014, 259: 456-464.
[24] MONTEMOR M F, CABRAL A M, ZHELUDKEVICH M L, et al. The corrosion resistance of hot dip galvanized steel pretreated with Bis-functional silanes modified with microsilica[J]. Surface & Coatings Technology, 2006, 200(9): 2875-2785.
[25] SINGH D D N, GHOSH R. Molybdenum–phosphorus compounds based passivator to control corrosion of hot dip galvanized coated rebars exposed in simulated concrete pore solution[J]. Surface & Coatings Technology, 2008, 202(19): 4687-4701.
[26] SHIBLI S M A, MANU R, BEEGUM S. Studies on the influence of metal oxides on the galvanic characteristics of hot-dip zinc coating[J]. Surface & Coatings Technology, 2008, 202(9): 1733-1737.
[27] SILVA FILHO J F, LINS V F C. Crystallographic texture and morphology of an electrodeposited zinc layer[J]. Surface & Coatings Technology, 2006, 200(9): 2892-2899.
[28] FIERRO G, INGO G M, MANCIA F, et al. XPS investigation on AISI 420 stainless steel corrosion in oil and gas well environments[J]. Journal of Materials Science, 1990, 25(2): 1407-1415.
点击浏览原文
http://dx.doi.org/10.11933/j.issn.1007-9289.20170228001
中国科协主管,中国机械工程学会主办。
0

文章信息

程琪, 许哲峰, 于晓华, 付天琳, 刘成, 刘建雄, 詹肇麟
CHENG Qi, XU Zhe-feng, YU Xiao-hua, FU Tian-lin, LIU Cheng, LIU Jian-xiong, ZHAN Zhao-lin
硅烷-钼复合无铬钝化膜的耐蚀性及标准曲线构建
Corrosion Resistance and Standard Curve of Silane-Molybdenum Composite Chromium-free Passivation Film
中国表面工程, 2017, 30(5): 60-66.
China Surface Engineering, 2017, 30(5): 60-66.
http://dx.doi.org/10.11933/j.issn.1007-9289.20170228001

文章历史

收稿日期: 2017-02-28
修回日期: 2017-06-30
网络出版日期: 2017-09-11

工作空间